留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波钻探器结构参数对输出特性的影响分析

张兴旺 张明 于登云 曾婷 殷参 杨帅 庞勇

张兴旺,张明,于登云,等. 超声波钻探器结构参数对输出特性的影响分析[J]. 北京航空航天大学学报,2023,49(7):1735-1742 doi: 10.13700/j.bh.1001-5965.2021.0554
引用本文: 张兴旺,张明,于登云,等. 超声波钻探器结构参数对输出特性的影响分析[J]. 北京航空航天大学学报,2023,49(7):1735-1742 doi: 10.13700/j.bh.1001-5965.2021.0554
ZHANG X W,ZHANG M,YU D Y,et al. Analysis of influence of ultrasonic drilling structure parameters on output characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1735-1742 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0554
Citation: ZHANG X W,ZHANG M,YU D Y,et al. Analysis of influence of ultrasonic drilling structure parameters on output characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1735-1742 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0554

超声波钻探器结构参数对输出特性的影响分析

doi: 10.13700/j.bh.1001-5965.2021.0554
基金项目: 国家自然科学基金(U1637208,U2013603)
详细信息
    通讯作者:

    E-mail:yudyun@sina.com

  • 中图分类号: V11

Analysis of influence of ultrasonic drilling structure parameters on output characteristics

Funds: National Natural Science Foundation of China (U1637208,U2013603)
More Information
  • 摘要:

    超声波钻探器因具有质量轻、低功耗、所需轴向力小、便于实时检测和原位分析及对象适应性强等特点,在地外天体科学钻探的新技术和新方法探索过程中备受瞩目。为进一步提高钻探器对不同钻进对象的适应性及其设计效率,通过研究超声波钻探器结构参数可知,其输出频率主要受碰撞冲击次数、弹簧钻杆的振动及钻杆本身的动力学特性等因素耦合影响。在此基础上,建立钻探器影响因素的物理模型,并结合实验研究了恢复弹簧刚度及初始预紧力和质量块质量对输出频率、位移和速度等参数的影响,得到弹簧初始预紧力对频率影响较为显著,弹簧刚度及质量块质量次之,为适应不同硬度对象高效钻进的变频超声波钻探器的优化设计提供技术参考。

     

  • 图 1  超声波钻探器结构组成

    Figure 1.  Structural composition of ultrasonic drill

    图 2  碰撞系统模型

    Figure 2.  Model of collision system

    图 3  实验测量系统

    Figure 3.  Experimental measurement system

    图 4  位移和速度时域曲线

    Figure 4.  Time domain curves of displacement and velocity

    图 5  位移和速度频域曲线

    Figure 5.  Frequency domain curves of displacement and velocity

    图 6  不同弹簧刚度对应的钻探器参数变化曲线

    Figure 6.  Variation curves of drill parameters corresponding to different spring stiffness

    图 7  不同初始预紧力对应参数变化曲线

    Figure 7.  Variation curves of drill parameters corresponding to different initial preloads

    图 8  不同质量块质量对应参数变化曲线

    Figure 8.  Variation curves of drill parameters corresponding to different free mass block masses

  • [1] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2): 108-113. doi: 10.15982/j.issn.2095-7777.2016.02.002

    YU D Y, SUN Z Z, MENG L Z, et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113(in Chinese). doi: 10.15982/j.issn.2095-7777.2016.02.002
    [2] 于登云, 张兴旺, 张明, 等. 小天体采样探测技术发展现状及展望[J]. 航天器工程, 2020, 29(2): 1-10. doi: 10.3969/j.issn.1673-8748.2020.02.001

    YU D Y, ZHANG X W, ZHANG M, et al. Development status and prospect of small celestial body sampling exploration techniques[J]. Spacecraft Engineering, 2020, 29(2): 1-10(in Chinese). doi: 10.3969/j.issn.1673-8748.2020.02.001
    [3] 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17. doi: 10.15982/j.issn.2095-7777.2014.01.003

    WU W R, YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17(in Chinese). doi: 10.15982/j.issn.2095-7777.2014.01.003
    [4] 刘志全, 庞彧, 李新立. 深空探测自动采样机构的特点及应用[J]. 航天器工程, 2011, 20(3): 120-125. doi: 10.3969/j.issn.1673-8748.2011.03.019

    LIU Z Q, PANG Y, LI X L. Characteristics and applications of automatic sampling mechanisms for deep space exploration[J]. Spacecraft Engineering, 2011, 20(3): 120-125(in Chinese). doi: 10.3969/j.issn.1673-8748.2011.03.019
    [5] FRANCA L F R. A bit–rock interaction model for rotary–percussive drilling[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5): 827-835.
    [6] TALALAY P G. Subglacial till and bedrock drilling[J]. Cold Regions Science and Technology, 2013, 86: 142-166. doi: 10.1016/j.coldregions.2012.08.009
    [7] WANG J S, CAO P L, LIU C P, et al. Comparison and analysis of subglacial bedrock core drilling technology in Polar Regions[J]. Polar Science, 2015, 9(2): 208-220. doi: 10.1016/j.polar.2015.03.003
    [8] BAR-COHEN Y, SHERRIT S, DOLGIN B P, et al. Ultrasonic/sonic drilling/coring (USDC) for planetary applications[C]//Proceedings of the SPIE—The International Society for Optical Engineering. Newport Beach: SPIE, 2001: 441-448.
    [9] BAR-COHEN Y, SHERRIT S, DOLGIN B P, et al. Ultrasonic/sonic driller/corer (USDC) as a sampler for planetary exploration[C]//2001 IEEE, IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 263-271.
    [10] BAO X Q, BAR-COHEN Y, CHANG Z, et al. Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC)[J]. IEEE Transactions of Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(9): 1147-1160. doi: 10.1109/TUFFC.2003.1235326
    [11] BAO X Q, BAR-COHEN Y, CHANG Z, et al. Ultrasonic/sonic impacting penetrators[J]. NASA Tech Briefs, 2008, 32(4): 58-60.
    [12] BAR-COHEN Y, SHERRIT S. Self mountable and extractable ultrasonic/sonic anchor: America, US7156189[P]. 2007-01-02.
    [13] SHERRIT S, BADESCU M, BAO X Q, et al. Novel horn designs for power ultrasonics[C]//IEEE Ultrasonics Symposium. Piscataway: IEEE Press, 2004: 2263-2266.
    [14] ZENSHEU C, STEWART S, MIRCEA B, et al. Design and analysis of ultrasonic actuator in consideration of length-reduction for a USDC (ultrasonic/sonic driller/corer)[C]//Proceedings of the SPIE Smart Structures Conference. Newport Beach: SPIE, 2005, 5762: 72-79.
    [15] 郭俊杰, 黄卫清, 李志荣. 一种新型的超声波/声波钻探器[J]. 压电与声光, 2008, 30(5): 579-581. doi: 10.3969/j.issn.1004-2474.2008.05.019

    GUO J J, HUANG W Q, LI Z R. A new ultrasonic/sonic drilling device[J]. Piezoelectrics&Acoustooptics, 2008, 30(5): 579-581(in Chinese). doi: 10.3969/j.issn.1004-2474.2008.05.019
    [16] 陈超, 黄卫清, 郭俊杰, 等. 深空探测用超声波/声波钻探采样器的研究[C]//第三届全国压电和声波理论及器件技术研讨会论文集, 南京: [出版者不详], 2008: 338-341.

    CHEN C, HUANG W Q, GUO J J, et al. Study on ultrasonic/sonic driller/corer for deep space exploration[C]//Proceedings of 3th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications. Nanjing: [s.n.], 2008: 338-341(in Chinese).
    [17] 陈超, 杨康. 超声波/声波钻探器的设计与试验[J]. 振动、测试与诊断, 2013, 33(2): 252-257. doi: 10.3969/j.issn.1004-6801.2013.02.014

    CHEN C, YANG K. Design and text of ultrasonic/sonic drilling rig[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 252-257(in Chinese). doi: 10.3969/j.issn.1004-6801.2013.02.014
    [18] 毕亚兰. 新型超声钻的动力特性研究[D]. 太原: 太原理工大学, 2016.

    BI Y L. Study on dynamic characteristics of a new ultrasonic drill[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese).
    [19] 李贺, 全齐全, 王鑫剑, 等. 一种基于压电驱动的火星岩石钻探器的研制[J]. 深空探测学报, 2016, 3(2): 156-161. doi: 10.15982/j.issn.2095-7777.2016.02.010

    LI H, QUAN Q Q, WANG X J, et al. Development of a piezoelectric-driven rock drilling device on Mars[J]. Journal of Deep Space Exploration, 2016, 3(2): 156-161(in Chinese). doi: 10.15982/j.issn.2095-7777.2016.02.010
    [20] BAI D E, QUAN Q Q, WANG Y C, et al. A longitudinal & longitudinal-torsional vibration actuator for rotary-percussive ultrasonic planetary drills[J]. Advances in Space Research, 2018, 63(2): 1065-1072.
    [21] WANG Y C, QUAN Q Q, YU H G, et al. Rotary-percussive ultrasonic drill: An effective subsurface penetrating tool for minor planet exploration[J]. IEEE Access, 2018, 6: 37796-37806. doi: 10.1109/ACCESS.2018.2853166
    [22] 王印超, 全齐全, 于红英, 等. 一种单压电叠堆驱动的回转冲击超声波钻[J]. 北京航空航天大学学报, 2018, 44(9): 1850-1859. doi: 10.13700/j.bh.1001-5965.2017.0699

    WANG Y C, QUAN Q Q, YU H Y, et al. A rotary-percussive ultrasonic drill driven by single piezoelectric stack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1850-1859(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0699
    [23] 王童照, 全齐全, 黄江川, 等. 地外天体超声波钻探器研究与应用综述[J]. 宇航学报, 2021, 42(4): 397-408. doi: 10.3873/j.issn.1000-1328.2021.04.001

    WANG T Z, QUAN Q Q, HUANG J C, et al. Overview of research and application of ultrasonic drills for extraterrestrial objects[J]. Journal of Astronautics, 2021, 42(4): 397-408(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.04.001
    [24] VILA L, MALLA R B. Analytical model of the contact interaction between the components of a special percussive mechanism for planetary exploration[J]. Acta Astronautica, 2016, 118: 158-167. doi: 10.1016/j.actaastro.2015.09.016
    [25] VILA L, MALLA R B. Dynamic and contact analysis of a special percussive mechanism for planetary subsurface exploration[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
    [26] VILA L, MALLA R B. Analysis of the hammering mechanism of a special percussive system for planetary exploration[C]//55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014.
  • 加载中
图(8)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  41
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 录用日期:  2021-12-13
  • 网络出版日期:  2022-02-24
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答