留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP层压板脱黏缺陷红外脉冲热波层析成像检测

钟佳岑 徐浩军 魏小龙 韩欣珉 常怡鹏

钟佳岑,徐浩军,魏小龙,等. CFRP层压板脱黏缺陷红外脉冲热波层析成像检测[J]. 北京航空航天大学学报,2023,49(7):1847-1856 doi: 10.13700/j.bh.1001-5965.2021.0555
引用本文: 钟佳岑,徐浩军,魏小龙,等. CFRP层压板脱黏缺陷红外脉冲热波层析成像检测[J]. 北京航空航天大学学报,2023,49(7):1847-1856 doi: 10.13700/j.bh.1001-5965.2021.0555
ZHONG J C,XU H J,WEI X L,et al. Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1847-1856 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0555
Citation: ZHONG J C,XU H J,WEI X L,et al. Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1847-1856 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0555

CFRP层压板脱黏缺陷红外脉冲热波层析成像检测

doi: 10.13700/j.bh.1001-5965.2021.0555
详细信息
    作者简介:

    钟佳岑 男,硕士研究生。主要研究方向:航空复合材料红外无损检测

    徐浩军 男,硕士,教授,博士生导师。主要研究方向:飞行器总体与作战运用

    魏小龙 男,博士,副教授,硕士生导师。主要研究方向:隐身涂层损伤智能检测

    通讯作者:

    E-mail:wei18892022001@163.com

  • 中图分类号: V250.2

Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography

More Information
  • 摘要:

    为实现基于红外脉冲热波成像检测碳纤维增强塑料(CFRP)层压板脱黏缺陷的三维层析成像,完善外场定量检测保障体系,提高层压板在服役过程中的安全性和可靠性,开展了红外脉冲热波层析成像方法与检测技术研究。制备了一种人工脱粘缺陷试样,采用红外脉冲热波层析成像检测技术对脱粘缺陷进行检测,分析了脱粘区和非脱粘区的表面热信号瞬态响应过程及红外脉冲热波层析成像对脱粘缺陷的检测能力。通过脱粘区与非脱粘区基于对数多项式拟合的重构热信号差,计算得到热信号极值时间图像,分析了脱粘区极值时间变化规律及缺陷状态;采用核函数模糊C均值聚类对相同缺陷深度对应的极值时间数组进行二分类,由此计算数组平均值作为缺陷对应极值时间;将该时间与脱粘区极值时间数组建立统计关系来构造断层图像序列,并计算其对应的缺陷深度;在此基础上,利用等值面绘制方法实现层压板脱粘缺陷三维可视化。研究表明,红外脉冲热波层析成像能够定量检测CFRP层压板脱粘缺陷,准确可靠显示层压板内部缺陷的分布和形貌,检测缺陷深度与实际缺陷深度的最大相对偏差低于15%,对工程应用具有一定指导意义。

     

  • 图 1  含脱黏缺陷的CFRP层压板示意图

    Figure 1.  Sketch map of CFRP laminate with debonding defects

    图 2  红外脉冲热波成像检测工作站

    Figure 2.  Detection workstation of infrared pulse thermal wave imaging

    图 3  脉冲激励结束后不同时刻试样表面热图

    Figure 3.  Heat images of sample surface at different time after pulse excitation

    图 4  表面热信号变化

    Figure 4.  Surface thermal signals change

    图 5  原始热图减背景热图的结果

    Figure 5.  Results of background heat image removed from original heat images

    图 6  目标图像

    Figure 6.  Target image

    图 7  不同拟合方法重构热信号对比

    Figure 7.  Comparison of reconstructed thermal signals by different fitting methods

    图 8  拟合前后热信号差变化

    Figure 8.  Change of thermal signal difference before and after fitting

    图 9  热信号极值时间图像

    Figure 9.  Thermal signal extremum time image

    图 10  缺陷中心、边缘热信号差变化

    Figure 10.  Change of thermal signal difference at defect center and edge

    图 11  热信号校准时间剖面图

    Figure 11.  Profile of extremum time image

    图 12  热信号极值时间三维网格图

    Figure 12.  Three dimensional grid diagram of extremum time image

    图 13  FCM分类结果

    Figure 13.  FCM classification results

    图 14  KFCM分类结果

    Figure 14.  KFCM classification results

    图 15  断层图像获取流程

    Figure 15.  Tomographic images acquisition procedure

    图 16  断层图像序列

    Figure 16.  Tomographic images sequence

    图 17  三维可视化流程

    Figure 17.  3D visualization procedure

    图 18  三维可视化效果

    Figure 18.  3D visualization

    表  1  试样孔深度h

    Table  1.   Sample hole depth h mm

    编号A($ d = 20 $ mm)B($ d = 15 $ mm)C($ d = 10 $ mm)D($ d = 5 $ mm)E($ d = 3 $ mm)F($ d = 2 $ mm)
    1$ 1.5 $$ 1.5 $$ 1.5 $$ 1 $$ 1 $$ 1 $
    2$ 2 $$ 2 $$ 2 $$ 1.5 $$ 1.25 $$ 1.25 $
    3$ 2.5 $$ 2.5 $$ 2.5 $$ 2 $$ 1.5 $$ 1.5 $
    4$ 3 $$ 3 $$ 3 $$ 2.5 $$ 1.75 $$ 1.75 $
    5$ 3.5 $$ 3.5 $$ 3.5 $$ 3 $$ 2 $$ 2 $
    6$ 4 $$ 4 $$ 4 $$ 3.5 $$ 2.25 $
    7$ 2.5 $
    8$ 2.75 $
    9$ 3 $
    10$ 3.25 $
    下载: 导出CSV

    表  2  缺陷深度计算结果

    Table  2.   Calculation results of defect depth

    编号 实际缺陷深度/mm 计算缺陷深度/mm 绝对误差/mm 相对误差/%
    A6、B6 4 4.376 0.376 9.40
    A5、B5 3.5 3.835 0.335 9.57
    A4、B4 3 3.402 0.402 13.40
    A3、B3 2.5 2.773 0.273 10.92
    A2、B2 2 2.165 0.165 8.25
    A1、B1 1.5 1.672 0.172 11.47
    下载: 导出CSV
  • [1] 尚金龙, 李思海, 陈贻明. 纤维增强塑料在航空航天领域中的应用[J]. 塑料工业, 2019, 47(1): 148-151. doi: 10.3969/j.issn.1005-5770.2019.01.032

    SHANG J L, LI S H, CHEN Y M. Application of fiber reinforced plastic in aerospace field[J]. China Plastics Industry, 2019, 47(1): 148-151(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.01.032
    [2] 薄纯强. 碳纤维机翼缺陷的锁相红外无损检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1.

    BO C Q. Non-destructive testing research of CFRP airfoil defects based on lock-in infrared thermography[D]. Harbin: Harbin Institute of Technology, 2019: 1(in Chinese).
    [3] 梁涛. 复合材料脱粘缺陷红外热成像无损检测定量分析研究[D]. 成都: 电子科技大学, 2017: 1.

    LIANG T. Quantitative analysis of infrared thermal imaging nondestructive testing for debonding defects of composite materials[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 1(in Chinese).
    [4] 李晓霞, 伍耐明, 段玉霞, 等. 碳纤维层合板低速冲击后的红外热波检测分析[J]. 复合材料学报, 2010, 27(6): 88-93. doi: 10.13801/j.cnki.fhclxb.2010.06.022

    LI X X, WU N M, DUAN Y X, et al. Infrared thermal wave imaging for carbon fiber laminated boards after low velocity impact[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 88-93(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.06.022
    [5] PENG W, WANG F, MENG X L, et al. Dynamic thermal tomography based on continuous wavelet transform for debonding detection of the high silicon oxygen phenolic resin cladding layer[J]. Infrared Physics & Technology, 2018, 92(5): 115-121.
    [6] 赵洪宝, 马丹, 马超群, 等. 航空用碳纤维复合材料典型缺陷无损检测技术研究[J]. 电子制作, 2020(24): 35-37. doi: 10.3969/j.issn.1006-5059.2020.24.014

    ZHAO H B, MA D, MA C Q, et al. Study on nondestructive testing technology of typical defects of aviation carbon fiber composites for aviation[J]. Practical Electronics, 2020(24): 35-37(in Chinese). doi: 10.3969/j.issn.1006-5059.2020.24.014
    [7] 南方, 肖鹏. 复合材料结构表面状态的红外热成像检测影响研究[J]. 航空制造技术, 2019, 62(14): 83-87. doi: 10.16080/j.issn1671-833x.2019.14.083

    NAN F, XIAO P. Research of composites surface influence on thermography detection technology[J]. Aeronautical Manufacturing Technology, 2019, 62(14): 83-87(in Chinese). doi: 10.16080/j.issn1671-833x.2019.14.083
    [8] 王扬, 李科, 刘俊岩. CFRP复合材料层板缺陷的红外热波成像检测方法[J]. 航空制造技术, 2016, 59(4): 36-42. doi: 10.16080/j.issn1671-833x.2016.04.036

    WANG Y, LI K, LIU J Y. Nondestructive testing and evaluation (NDT&E) for CFRP laminate with subsurface defects using infrared thermal wave imaging[J]. Aeronautical Manufacturing Technology, 2016, 59(4): 36-42(in Chinese). doi: 10.16080/j.issn1671-833x.2016.04.036
    [9] 张金玉, 杨正伟, 田干, 等. 红外热波检测及其图像序列处理技术[M]. 北京: 国防工业出版社, 2015: 16-17.

    ZHANG J Y, YANG Z W, TIAN G, et al. Infrared thermal wave testing and images sequence processing technology[M]. Beijing: National Defense Industry Press, 2015: 16-17(in Chinese).
    [10] 姜千辉, 姜长胜, 葛庆平, 等. 红外热波序列图像的图像分割与三维显示[J]. 无损检测, 2008, 30(2): 100-103. doi: 10.3969/j.issn.1000-6656.2008.02.010

    JIANG Q H, JIANG C S, GE Q P, et al. Segmentation and 3D display of infrared thermal image[J]. Nondestructive Testing, 2008, 30(2): 100-103(in Chinese). doi: 10.3969/j.issn.1000-6656.2008.02.010
    [11] TOIVANEN J M, TARVAINEN T, HUTTUNEN J M J, et al. Thermal tomography utilizing truncated Fourier series approximation of the heat diffusion equation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 860-867. doi: 10.1016/j.ijheatmasstransfer.2016.12.060
    [12] TAVAKOLIAN P, SIVAGURUNATHAN K, MANDELIS A. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions[J]. Journal of Applied Physics, 2017, 122(2): 023103. doi: 10.1063/1.4992807
    [13] MELNYK S I, MELNYK S S, TULUZOV I G. Method of projection dynamic thermal tomography (PDTT)[C]//International Conference on Quantitative Infrared Thermography. [S.1.]:[s.n.], 2012: 1-6.
    [14] ELHASSNAOUI A, SAHNOUN S. A three-dimensional reconstruction algorithm for pulsed thermography[J]. Journal of Materials and Environmental Science, 2014, 5(4): 983-988.
    [15] VAVILOV V P, NESTERUK D A, SHIRYAEV V V, et al. Thermal (infrared) tomography: Terminology, principal procedures, and application to nondestructive testing of composite materials[J]. Russian Journal of Nondestructive Testing, 2010, 46(3): 151-161. doi: 10.1134/S1061830910030010
    [16] 彭伟. 药柱包覆层缺陷红外脉冲成像及动态层析检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 79-80.

    PENG W. Study on infrared pulse imaging and dynamic chromatography detection technology for coating defects of grain[D]. Harbin: Harbin Institute of Technology, 2020: 79-80(in Chinese).
    [17] VAVILOV V, MALDAGUE X, DUFORT B, et al. Thermal nondestructive testing of carbon epoxy composites: Detailed analysis and data processing[J]. NDT & E International, 1993, 26(2): 85-95.
    [18] VAVILOV V. Dynamic thermal tomography: Recent improvements and applications[J]. NDT & E International, 2015, 71: 23-32.
    [19] PAWAR S S, VAVILOV V P. Applying the heat conduction-based 3D normalization and thermal tomography to pulsed infrared thermography for defect characterization in composite materials[J]. International Journal of Heat and Mass Transfer, 2016, 94: 56-65. doi: 10.1016/j.ijheatmasstransfer.2015.11.018
    [20] PENG W, WANG F, LIU J Y, et al. Pulse phase dynamic thermal tomography investigation on the defects of the solid-propellant missile engine cladding layer[J]. International Journal of Thermophysics, 2018, 39(4): 48-59. doi: 10.1007/s10765-018-2366-3
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  47
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-21
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答