留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼/机翼气动干扰对复合式直升机性能影响

杨克龙 韩东

杨克龙,韩东. 旋翼/机翼气动干扰对复合式直升机性能影响[J]. 北京航空航天大学学报,2023,49(7):1761-1771 doi: 10.13700/j.bh.1001-5965.2021.0561
引用本文: 杨克龙,韩东. 旋翼/机翼气动干扰对复合式直升机性能影响[J]. 北京航空航天大学学报,2023,49(7):1761-1771 doi: 10.13700/j.bh.1001-5965.2021.0561
YANG K L,HAN D. Influence of rotor/wing aerodynamic interference on performance of compound helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1761-1771 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0561
Citation: YANG K L,HAN D. Influence of rotor/wing aerodynamic interference on performance of compound helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1761-1771 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0561

旋翼/机翼气动干扰对复合式直升机性能影响

doi: 10.13700/j.bh.1001-5965.2021.0561
基金项目: 国家自然科学基金(11972181);直升机旋翼动力学国家级重点实验室基金(2005RAL20200104)
详细信息
    通讯作者:

    E-mail:donghan@nuaa.edu.cn

  • 中图分类号: V211.52

Influence of rotor/wing aerodynamic interference on performance of compound helicopters

Funds: National Natural Science Foundation of China (11972181); Foundation of Rotorcraft Aeromechanics Laboratory (2005RAL20200104)
More Information
  • 摘要:

    为研究旋翼/机翼气动干扰对双螺旋桨推进复合式直升机的高速飞行性能的影响,建立一种可快速预测复合式直升机飞行性能的模型,以加装机翼和螺旋桨的AS365N“海豚”直升机为样例,分析了400 km/h高速飞行时,旋翼/机翼气动干扰对全机飞行性能的影响及机理,并探讨了用副翼操纵配平气动干扰引起的机翼滚转力矩时,全机功率的变化规律。研究表明:气动干扰增加了机翼的诱导速度,导致机翼的升力系数降低、阻力系数增加。在旋翼不对称涡系的作用下,位于旋翼前行侧下机翼的诱导速度和升阻力系数变化比后行侧的更显著。气动干扰导致机翼升力分配从80.00%降低至71.59%,旋翼升力分配从20.04%增加至28.48%。旋翼、螺旋桨和全机功率分别增加了16.60%、1.86%和3.76%。气动干扰使机翼滚转力矩增加、旋翼滚转力矩减小,利于全机配平,但会增加全机功率。用副翼操纵来平衡由气动干扰引起的机翼滚转力矩时,旋翼侧向周期变距和阻力减小,降低了全机功率。

     

  • 图 1  尾迹在旋翼桨尖平面中的示意图

    Figure 1.  Schematic of wake geometry in tip path plane of main rotor

    图 2  涡线对任意点诱导速度

    Figure 2.  Induced velocity at an arbitrary point by vortex filament

    图 3  机翼涡格示意图

    Figure 3.  Schematic of vortex lattice of wing

    图 4  螺旋桨桨叶叶素气动力

    Figure 4.  Aerodynamics of blade element of propeller

    图 5  复合式直升机受力和力矩

    Figure 5.  Forces and moments acting on compound helicopter

    图 6  HV−ID直升机旋翼尾迹形状预测值、试验值和自由尾迹预测值

    Figure 6.  Wake geometry of HV−ID helicopter main roctor among prediction, experimental value and free wake prediction

    图 7  旋翼尾迹诱导速度预测值与试验值

    Figure 7.  Induced velocity among of main roctor prediction, experimental value and free wake prediction

    图 8  机翼升力系数的预测值、试验值和算例值

    Figure 8.  Wing lift coefficient among prediction, experimental value and calculation example

    图 9  螺旋桨拉力系数和效率的预测值与试验值

    Figure 9.  Wing lift coefficient among prediction, experimental value and calculation example

    图 10  机翼剖面(翼型)的诱导速度和升阻力系数沿翼展分布

    Figure 10.  Distribution of induced velocity, lift and drag coefficients of wing sections (airfoils) along wingspan

    图 11  气动干扰对旋翼和机翼的升力分配及滚转力矩的影响

    Figure 11.  Effect of aerodynamic interference on the lift share and rolling moment of main rotor and wing

    图 12  气动干扰对旋翼、螺旋桨和全机功率的影响

    Figure 12.  Effect of aerodynamic interference on the power of main rotor propeller and aircraft

    图 13  功率和功率增加率对比

    Figure 13.  Comparison of power and power increase ratio

    图 14  功率、侧向周期变距和阻力系数对比

    Figure 14.  Comparison of power, cyclic pitch angle and drag coefficient

    表  1  样例复合式直升机参数

    Table  1.   Parameters of a compound helicopter

    部件半径/展长/m平均弦长/m转速/(rad·s−1)负扭/(°)安装角/(°)翼型桨叶片数/机翼展弦比
    旋翼5.97 0.38537.7−10OA212/2095
    机翼8.481.2504NACA65-216.78
    平尾4.0 0.900NACA65-2106.78
    螺旋桨1.350.25157.1−35−10Clark Y5
    下载: 导出CSV
  • [1] 倪先平. 未来直升机技术发展展望[J]. 航空制造技术, 2008, 51(3): 32-37. doi: 10.3969/j.issn.1671-833X.2008.03.004

    NI X P. Development prospect of helicopter technology in the future[J]. Aeronautical Manufacturing Technology, 2008, 51(3): 32-37(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.03.004
    [2] 吕春雷, 吴希明, 武庆中. 先进直升机发展现状及设计革新[J]. 航空制造技术, 2013, 56(17): 26-29. doi: 10.3969/j.issn.1671-833X.2013.17.001

    LYU C L, WU X M, WU Q Z. Development status and design innovation of advanced helicopter[J]. Aeronautical Manufacturing Technology, 2013, 56(17): 26-29(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.17.001
    [3] 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179.

    WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(2): 173-179(in Chinese).
    [4] HIRSCHBERG M J. X2, X3, S-97 and X-49: The battle of the compounds is joined[J]. Vertiflite, 2010, 56(4): 16-22.
    [5] 杨克龙, 韩东, 石启鹏. 升推力装置对复合直升机飞行性能的提升[J]. 航空动力学报, 2020, 35(11): 2429-2439.

    YANG K L, HAN D, SHI Q P. Lifting and propulsion devices for flight performance improvement of a compound helicopter[J]. Journal of Aerospace Power, 2020, 35(11): 2429-2439(in Chinese).
    [6] YANG K L, HAN D, SHI Q P. Study on the lift and propulsive force shares to improve the flight performance of a compound helicopter[J]. Chinese Journal of Aeronautics, 2022, 35(1): 365-375. doi: 10.1016/j.cja.2021.02.010
    [7] LYNN R R. Wing-rotor interactions[J]. Journal of Aircraft, 1966, 3(4): 326-332. doi: 10.2514/3.43742
    [8] MAKINO K, AKASAKA T, HAMAMOTO Y, et al. Experimental investigation of the rotor-wing aerodynamic interaction on a compound helicopter in hover[C]//6th Asian/Australian Rotorcraft Forum & Heli Japan. Kanazawa: Vertical Flight Society, 2017.
    [9] HAMAMOTO Y, AKASAKA T, TANABE Y. Experimental investigation of the rotor-wing aerodynamic interaction on a compound helicopter in high advance ratio[C]//6th Asian/Australian Rotorcraft Forum & Heli Japan. Kanazawa: Vertical Flight Society, 2017.
    [10] YEO H. Design and aeromechanics investigation of compound helicopters[J]. Aerospace Science and Technology, 2019, 88: 158-173. doi: 10.1016/j.ast.2019.03.010
    [11] ORCHARD M, NEWMAN S. Some design issues for the optimisation of the compound helicopter configuration[C]//56th American Hclicopter Society Annual Forum. Kanazawa: Vertical Flight Society, 2000.
    [12] SUGAWARA H, TANABE Y. Numerical investigation of rotor/wing aerodynamic interactions at high advance ratios[J]. Journal of Aircraft, 2019, 56(6): 2285-2298. doi: 10.2514/1.C035370
    [13] SUGAWARA H, TANABE Y. A study of rotor wing aerodynamic interaction at high speed flight on a compound helicopter[C]//6th Asian/Austrailian Rotorcraft Forum & Heli Japan. Kanazawa: Vertical Flight Society, 2017.
    [14] FREY F, THIEMEIER J, ÖHRLE C, et al. Aerodynamic interactions on airbus helicopters' compound helicopter RACER in cruise flight[J]. Journal of the American Helicopter Society, 2020, 65(4): 1-14.
    [15] 万佳, 陈铭. 机翼位置对复合式直升机旋翼-机翼干扰的影响[J]. 北京航空航天大学学报, 2009, 35(5): 519-522.

    WAN J, CHEN M. Influence of wing location on rotor-wing interaction of compound helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 519-522(in Chinese).
    [16] 万佳, 陈铭. 复合式直升机前飞状态旋翼-机翼干扰计算分析[J]. 航空动力学报, 2009, 24(11): 2459-2464.

    WAN J, CHEN M. Rotor-wing interaction analysis of a compound helicopter in forward flight[J]. Journal of Aerospace Power, 2009, 24(11): 2459-2464(in Chinese).
    [17] 赵寅宇, 黎鑫, 史勇杰, 等. 双拉力螺旋桨构型复合式高速直升机旋翼/螺旋桨干扰流场分析[J]. 南京航空航天大学学报, 2017, 49(2): 154-164.

    ZHAO Y Y, LI X, SHI Y J, et al. Analysis on rotor-propellers interaction flowfield for compound double-thust-propeller high-speed helicopters[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(2): 154-164(in Chinese).
    [18] 申遂愿, 朱清华, 朱振华, 等. 高速直升机旋翼/螺旋桨/机身干扰特性分析[J]. 航空工程进展, 2020, 11(1): 46-55.

    SHEN S Y, ZHU Q H, ZHU Z H, et al. Analysis of rotor/propeller/fuselage interference characteristics of high-speed helicopter[J]. Advances in Aeronautical Science and Engineering, 2020, 11(1): 46-55(in Chinese).
    [19] LEISHMAN J G, BI N P. Experimental investigation of rotor/lifting surface interactions[J]. Journal of Aircraft, 1994, 31(4): 846-854(in Chinese). doi: 10.2514/3.46570
    [20] 黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报, 2021, 36(6): 1156-1168.

    HUANG M Q, XU D X, HE L, et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power, 2021, 36(6): 1156-1168(in Chinese).
    [21] ORMISTON R A. Revitalising advanced rotorcraft research and the compound helicopter[J]. The Aeronautical Journal, 2016, 120(1223): 83-129. doi: 10.1017/aer.2015.5
    [22] 张勇刚, 崔钊, 韩东, 等. 加装格尼襟翼旋翼的直升机飞行性能[J]. 航空学报, 2016, 37(7): 2208-2217.

    ZHANG Y G, CUI Z, HAN D, et al. Flight performance of helicopter rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2208-2217(in Chinese).
    [23] 董晨, 韩东, 杨克龙. 独立桨距控制对直升机飞行性能的影响[J]. 航空学报, 2018, 39(10): 222075.

    DONG C, HAN D, YANG K L. Effect of individual blade pitch control on flight performance of helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 222075(in Chinese).
    [24] BEDDOES T S. A wake model for high resolution airloads[C]//2nd International Conference on Basic Rotorcraft Research. New York: Vertical Flight Society, 1985.
    [25] HEYSON H H, KATZOFF S. Induced velocities near a lifting rotor with nonuniform disk loading: NACA-TN-3690[R]. Hampton: Hampton NACA Langley Aerorktical Laboratory, 1957: 26-34.
    [26] LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2006: 599-601.
    [27] BHAGWA M J, LEISHMAN J G. Generalized viscous vortex model for applications[C]//The 58th Annual Forum and Technology Display of the American Helicopter Society. Montreal: Vertical Flight Society, 2002.
    [28] CUMMINGS R M, MASON W H, MORTON S A, et al. Applied computational aerodynamics: A modern engineering approach[M]. Cambridge: Cambridge University Press, 2015: 60-630.
    [29] HU H. Study of the trac airfoil table computational system: NASA-CR-1999-209323[R]. Hampton: Hampton NASA Langley Research Center, 1999: 5-15.
    [30] GUDMUNDSSON S. General aviation aircraft design[M]. 2nd ed. Butterworth-Heinemann: Butterworth-Heinemann Press, 2014: 387-388.
    [31] MCCORMICK B W. Aerodynamics, aeronautics, and flight mechanics[M]. 2nd ed. New York: John Wiley & Sons, Inc., 1995: 90-100.
    [32] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 75-82.

    LIU P Q. Air propeller theory and its application[M]. Beijing: Beihang University Press, 2006: 75-82 (in Chinese).
    [33] LANDGREBE A J, BELLINGER E D. An investigation of the quantitative applicability of model helicopter rotor wake patterns obtained from a water tunnel: AD-739946[R]. Hampton: Hampton United Aircraft Corporation Research Laboratories, 1971: 25-36.
    [34] ELLIOTT J W, ALTHOFF S L, SAILEY R H. Inflow measurements made with a laser velocimeter on a helicopter model in forward flight. Volume 1. Rectangular planform blades at an advance ratio of 0.15: NASA-TM-100541[R]. Hampton: NASA Langley Research Center, 1988: 56-64.
    [35] SIVELLS J C. Experimental and calculated characteristics of three wings of NACA 64-210 and 65-210 airfoil sections with and without 2 degree washout: NACA-TN-1422[R]. Hampton: NACA Langley Memorial Aeronautical Laboratory, 1947: 68-79.
    [36] DA ROCHA SANTOS P D. Aero-structural wing analysis using a vortex, lattice method coupled with an equivalent plate model[D]. Beira: Universidade da Beira Interior, 2011: 19-20.
    [37] THEODORSEN T, STICKLE G W, BREVOORT M J. Characteristics of six propellers including the high-speed range: NACA-TR-594[R]. Hampton: Hampton NACA Langley Memorial Aeronautical Laboratory, 1937: 25-36.
    [38] SHI Y J, XU G H, WEI P. Rotor wake and flow analysis using a coupled eulerian-lagrangian method[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 384-402. doi: 10.1080/19942060.2016.1174887
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  86
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-01-26
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答