留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软件定义卫星技术概念及发展

徐帆江 周鑫 赵军锁 吴凤鸽 林翊钧 夏玉立

徐帆江,周鑫,赵军锁,等. 软件定义卫星技术概念及发展[J]. 北京航空航天大学学报,2023,49(7):1543-1552 doi: 10.13700/j.bh.1001-5965.2021.0562
引用本文: 徐帆江,周鑫,赵军锁,等. 软件定义卫星技术概念及发展[J]. 北京航空航天大学学报,2023,49(7):1543-1552 doi: 10.13700/j.bh.1001-5965.2021.0562
XU F J,ZHOU X,ZHAO J S,et al. Conception and development of software-defined satellite technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1543-1552 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0562
Citation: XU F J,ZHOU X,ZHAO J S,et al. Conception and development of software-defined satellite technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1543-1552 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0562

软件定义卫星技术概念及发展

doi: 10.13700/j.bh.1001-5965.2021.0562
基金项目: 国家自然科学基金(91938301,62027801)
详细信息
    通讯作者:

    E-mail:zhouxin@iscas.ac.cn

  • 中图分类号: V474;TP391

Conception and development of software-defined satellite technology

Funds: National Natural Science Foundation of China (91938301,62027801)
More Information
  • 摘要:

    针对在轨卫星呈现海量化、网络化、智能化发展的趋势,重点探讨了软件定义卫星技术的产生背景、概念、内容与挑战。通过历史回顾,归纳卫星系统研制的3个阶段,指出目前卫星系统正在从平台、载荷优先向算法优先演进,这一趋势推动了软件定义卫星技术的产生与发展;阐述软件定义卫星技术的概念与边界,指出研究软件定义卫星技术的目的不是研制一类新型卫星,而是利用软件定义技术实现硬件资源虚拟化、系统软件平台化、应用软件多样化,提升卫星系统的网络化与智能化;分析软件定义卫星技术的主要内容与挑战,并对未来的发展进行展望。

     

  • 图 1  詹姆斯韦伯太空望远镜示意图

    Figure 1.  Schematic of JWST

    图 2  卫星平台/载荷优先向算法优先演进概念

    Figure 2.  Concept of satellite evolution from platform/ payload-first to algorithm-first

    图 3  软件定义卫星技术的发展层次

    Figure 3.  Development levels of software defined satellite technology

    图 4  软件定义卫星技术的主要研究内容

    Figure 4.  Contents of software-defined satellite technology

    图 5  软件定义卫星系统架构

    Figure 5.  System framework of software-defined satellite

    图 6  惠普星载超级计算机原型

    Figure 6.  HP Space-borne computer prototype

    表  1  东方红DFH卫星平台

    Table  1.   DFH satellite platform

    平台发射质量/kg载荷质量/kg载荷功率/ kW寿命/a首飞卫星与时间
    DFH-323202308东方红3号通信卫星,1994-11-30
    DFH-3A27403602.512中星22号,2000-01-26
    DFH-3B3800400~4503~412~15老挝1号,2015-11-21
    DFH-45000~5300450~7004~812~15鑫诺2号,2006-10-29
    DFH-4e550~6000800~1000≥1015亚太6D,2020-07-09
    DFH-56500~90001200~ 22004~2212~15实践20号,2020-01-05
    下载: 导出CSV

    表  2  典型载荷优先的卫星示例

    Table  2.   Classical payload-first satellites

    序号卫星主要载荷发射时间
    1哈勃空间望远镜口径2.4 m、长度16 m的主反射镜1990-04-24
    2詹姆斯韦伯太空望远镜载荷质量6.2 t、口径6.5 m的主反射镜2021-12-25
    3NROL-44电子侦察载荷
    直径超100 m、展开面积超数千平方米的巨型天线
    2020-12-11
    4AEHF-6军事通信载荷
    调频无线电、相控阵天线、核加固等
    2020-03-26
    5悟空号粒子探测载荷
    塑闪阵列探测器、硅阵列探测器、BGO量能器、中子探测器
    2015-12-17
    下载: 导出CSV
  • [1] 齐心, 周思卓, 林屹立. 美军小卫星“三化”前沿技术发展探析[J]. 国际太空, 2021(3): 54-59. doi: 10.3969/j.issn.1009-2366.2021.03.012

    QI X, ZHOU S Z, LIN Y L. An analysis of the frontier technology development of the US army’s small satellites[J]. Space International, 2021(3): 54-59(in Chinese). doi: 10.3969/j.issn.1009-2366.2021.03.012
    [2] UCS. UCS satellite database[EB/OL]. [2021-09-01]. https://www.ucsusa.org/resources/satellite-database.
    [3] 王迪, 骆盛, 毛锦, 等. Starlink卫星系统技术概要[J]. 航天电子对抗, 2020, 36(5): 51-56. doi: 10.3969/j.issn.1673-2421.2020.05.012

    WANG D, LUO S, MAO J, et al. Overview of Starlink satellite system technology[J]. Aerospace Electronic Warfare, 2020, 36(5): 51-56(in Chinese). doi: 10.3969/j.issn.1673-2421.2020.05.012
    [4] 郭丽红, 蔡润斌, 李臻. 2020年美国太空军事力量发展综述[J]. 国际太空, 2021(5): 43-47. doi: 10.3969/j.issn.1009-2366.2021.05.009

    GUO L H, CAI R B, LI Z. Overview of U. S. space military force development in 2020[J]. Space International, 2021(5): 43-47(in Chinese). doi: 10.3969/j.issn.1009-2366.2021.05.009
    [5] 司耀锋, 吴林, 郝媛媛, 等. 美军作战快速响应太空计划发展综述[J]. 国际太空, 2012(1): 33-41.

    SI Y F, WU L, HAO Y Y, et al. Overview of the development of the U. S. military’s operational rapid response space program[J]. Space International, 2012(1): 33-41(in Chinese).
    [6] SpaceX. Starlink[EB/OL]. [2021-09-01]. https://www.starlink.com.
    [7] 惠仲阳. 范唯唯. 日本发布新版《宇宙基本计划》[J]. 空间科学学报, 2020, 40(6): 968.

    HUI Z Y, FANG W W. Japan releases new version of “Universal Basic Plan”[J]. Chinese Journal of Space Science, 2020, 40(6): 968(in Chinese).
    [8] 闵士权. 我国天基综合信息网构想[J]. 航天器工程, 2013, 22(5): 1-14.

    MIN S Q. An idea of China’s space-based integrated information network[J] Spacecraft Engineering, 2013, 22(5): 1-14 (in Chinese).
    [9] 赵军锁, 吴凤鸽, 刘光明. 软件定义卫星技术发展与展望[J]. 卫星与网络, 2017(12): 46-50. doi: 10.3969/j.issn.1672-965X.2017.12.010

    ZHAO J S, WU F G, LIU G M. Development and prospect of software defined satellite technology[J]. Satellite & Network, 2017(12): 46-50(in Chinese). doi: 10.3969/j.issn.1672-965X.2017.12.010
    [10] 周渊, 张洵颖, 智永锋, 等. 软件定义卫星有效载荷技术研究[J]. 西北工业大学学报, 2020, 38(S1): 96-101.

    ZHOU Y, ZHANG X Y, ZHI Y F, et al. Research on software defined satellite payload technology[J]. Journal of Northwestern Polytechnical University, 2020, 38(S1): 96-101(in Chinese).
    [11] 吴启星. 软件定义卫星研究现状与技术发展展望[J]. 中国电子科学研究院学报, 2021, 16(4): 333-337. doi: 10.3969/j.issn.1673-5692.2021.04.005

    WU Q X. State of the art and development analysis of software defined satellites[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(4): 333-337(in Chinese). doi: 10.3969/j.issn.1673-5692.2021.04.005
    [12] 梅宏. 万物皆可互联, 一切均可编程[J]. 方圆, 2018(12): 58-59. doi: 10.3969/j.issn.1674-5396.2018.12.028

    MEI H. Everything can be connected, everything can be programmable[J]. Fangyuan Magazine, 2018(12): 58-59(in Chinese). doi: 10.3969/j.issn.1674-5396.2018.12.028
    [13] 梅宏. 软件定义一切: 机遇和挑战 [EB/OL]. [2021-09-01]. https://www.fx361.com/page/2018/0112/2687238.shtml.

    MEI H. Software defines everything: Opportunities and challenges [EB/OL]. [2021-09-01]. https://www.fx361.com/page/2018/0112/2687238.shtml(in Chinese).
    [14] 刘帅军, 徐帆江, 刘立祥, 等. Starlink第二代系统介绍[J]. 卫星与网络, 2020(12): 62-65.

    LIU S J, XU F J, LIU L X, et al. Starlink second generation system introduction[J]. Satellite & Network, 2020(12): 62-65(in Chinese).
    [15] 雷江利, 牟金岗, 赵广秀, 等. 新一代载人飞船试验船回收着陆系统任务特点分析[J]. 国际太空, 2020(9): 8-12. doi: 10.3969/j.issn.1009-2366.2020.09.003

    LEI J L, MOU J G, ZHAO G X, et al. Analysis of mission characteristics of the new generation manned spacecraft test ship recovery and landing system[J]. Space International, 2020(9): 8-12(in Chinese). doi: 10.3969/j.issn.1009-2366.2020.09.003
    [16] 王芳, 程洪玮, 彭博. “猎鹰9”运载火箭海上平台成功回收的分析及启示[J]. 装备学院学报, 2016, 27(6): 69-74. doi: 10.3783/j.issn.2095-3828.2016.06.014

    WANG F, CHENG H W, PENG B. Analysis and enlightenment of successful recovery of “Falcon 9” carrier rocket on offshore platform[J]. Journal of Equipment Academy, 2016, 27(6): 69-74(in Chinese). doi: 10.3783/j.issn.2095-3828.2016.06.014
    [17] Eutelsat. Quantum [EB/OL]. [2021-09-01]. https://www.eutelsat.com.
    [18] 杨小牛. “软件星”概念研究[J]. 电子对抗, 2002(1): 1-5.

    YANG X N. Research on the concept of software satellite[J]. Electronic Warfare, 2002(1): 1-5(in Chinese).
    [19] 杨小牛. 基于“软件星”的综合一体化空间信息系统[J]. 中国电子科学研究院学报, 2004(4): 15-22. doi: 10.3969/j.issn.1673-5692.2004.04.004

    YANG X N. Comprehensive integrated spatial information system based on software satellite[J]. Journal of China Academy of Electronics and Information Technology, 2004(4): 15-22(in Chinese). doi: 10.3969/j.issn.1673-5692.2004.04.004
    [20] 杜莹. 软件定义卫星技术开启卫星智能新纪元[J]. 科技纵览, 2019(8): 59-61.

    DU Y. Software-defined satellite technology opens a new era of satellite intelligence[J]. IEEE Spectrum, 2019(8): 59-61(in Chinese).
    [21] 徐福祥. 卫星工程概论[M]. 北京: 宇航出版社, 2003.

    XU F X. Introduction to satellite engineering[M]. Beijing: China Astronautic Publishing House, 2003(in Chinese).
    [22] Lockheed Martin. SmartSat[EB/OL]. [2021-09-01]. https://www.lockheedmartin.com/en-us/products/satellite.html.
    [23] Boeing. BOEING 702X satellites[EB/OL]. [2021-09-01]. http://www.boeing.com/space/boeing-satellite-family/702X/index.page.
    [24] 中国空间技术研究院. 卫星平台[EB/OL]. [2021-09-01]. https://www.cast.cn/channel/1539.

    Chinese Academy of Space Technology. Satellite platform[EB/OL]. [2021-09-01]. https://www.cast.cn/channel/1539(in Chinese).
    [25] 韩天龙, 杜刚, 陆宏伟, 等. 国外通信卫星公用平台发展趋势及启示[J]. 航天工业管理, 2015(3): 35-38. doi: 10.3969/j.issn.1004-7980.2015.03.009

    HAN T L, DU G, LU H W, el al. Development trend and enlightenment of foreign communication satellite public platform[J]. Aerospace Industry Management, 2015(3): 35-38(in Chinese). doi: 10.3969/j.issn.1004-7980.2015.03.009
    [26] GARDNERJ P, MATHER J C, CLAMPIN M, et al. The James Webb space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606. doi: 10.1007/s11214-006-8315-7
    [27] SCIVILLE N, ABRAHAM R G, AUSSEL H, et al. COSMOS: Hubble space telescope observations[J]. The Astrophysical Journal Supplement Series, 2007, 172(1): 38. doi: 10.1086/516580
    [28] Aerospace. NROL-44 launch: Delivering on mission success [EB/OL]. [2021-09-01]. https://aerospace.org/article/nrol-44-launch-delivering-mission-success.
    [29] 常进, 范一中. 悟空号: 暗物质粒子的探索者[J]. 科学, 2018, 70(3): 18-20.

    CHANG J, FAN Y Z. Dark matter particle explorer (DAMPE)[J]. Science, 2018, 70(3): 18-20(in Chinese).
    [30] 李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报 (信息科学版), 2017, 42(2): 143-149.

    LI D R, WANG M, SHEN X, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149(in Chinese).
    [31] 邓宝松, 孟志鹏, 义余江, 等. 对地观测卫星任务规划研究[J]. 计算机测量与控制, 2019, 27(11): 130-139. doi: 10.16526/j.cnki.11-4762/tp.2019.11.029

    DENG B S, MENG Z P, YI Y J, el al. Research of task scheduling of earth observing satellites[J]. Computer Measurement & Control, 2019, 27(11): 130-139(in Chinese). doi: 10.16526/j.cnki.11-4762/tp.2019.11.029
    [32] 李莉. 软件定义卫星, 智能引领航天[J]. 中国科技奖励, 2019(1): 26-28. doi: 10.3969/j.issn.1672-903X.2019.01.008

    LI L. Software-defined satellites, intelligence leads aerospace[J]. China Awards for Science and Technology, 2019(1): 26-28(in Chinese). doi: 10.3969/j.issn.1672-903X.2019.01.008
    [33] 赵军锁, 吴凤鸽, 刘光明, 等. 发展软件定义卫星的总体思路与技术实践[J]. 卫星与网络, 2018(4): 44-49. doi: 10.3969/j.issn.1672-965X.2018.04.011

    ZHAO J S, WU F G, LIU G M, et al. General ideas and technical practices for the development of software-defined satellites[J]. Satellite & Network, 2018(4): 44-49(in Chinese). doi: 10.3969/j.issn.1672-965X.2018.04.011
    [34] MITOLA J I. Software radio: Survey, critical evaluation and future direction[C]//Telesystems Conference. [S.I.]:[s.n.], 1992.
    [35] LANTZ B, HELLER B, MCKEOWN N. A network in a laptop: Rapid prototyping for software-defined networks[C]//Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. New York: ACM, 2010: 1-6.
    [36] NUNES B A A, MENDONCA M, NGUYEN X N, et al. A survey of software-defined networking: Past, present, and future of programmable networks[J]. IEEE Communications surveys & tutorials, 2014, 16(3): 1617-1634.
    [37] HOSKEN M. VWware Software-defined storage: A design guide to the policy-driven, software-defined storage era[M]. New York: John Wiley & Sons, 2016.
    [38] 孟天闯, 李佳幸, 黄晋, 等. 软件定义汽车技术体系的研究[J]. 汽车工程, 2021, 43(4): 459-468. doi: 10.19562/j.chinasae.qcgc.2021.04.002

    MENG T C, LI J X, HUANG J, et al. Study on technical system of software defined vehicles[J]. Automotive Engineering, 2021, 43(4): 459-468(in Chinese). doi: 10.19562/j.chinasae.qcgc.2021.04.002
    [39] 袁博. 新能源汽车技术发展与趋势综述[J]. 现代商贸工业, 2018, 39(35): 12-16. doi: 10.19311/j.cnki.1672-3198.2018.35.005

    YUAN B. Overview of new energy vehicle technology development and trends[J]. Modern Business Trade Industry, 2018, 39(35): 12-16(in Chinese). doi: 10.19311/j.cnki.1672-3198.2018.35.005
    [40] 李越, 马珉. 自主可控的“软件定义”时代——访中国工程院院士倪光南[J]. 高科技与产业化, 2017(12): 33-36.

    LI Y, MA M. Autonomous and controllable “software-defined” era—Interview with Ni Guangnan, academician of the Chinese Academy of Engineering[J]. High-Technology & Commercialization, 2017(12): 33-36(in Chinese).
    [41] 李培根. 闲话“软件定义制造”[EB/OL]. [2021-09-01]. https://mp.weixin.qq.com/s/pbdRkGAQIXDijvq5U9NR4g.

    LI P G. Talking about “software-defined manufacturing” [EB/OL]. [2021-09-01]. https://mp.weixin.qq.com/s/pbdRkGAQIXDijvq5U9-NR4g(in Chinese).
    [42] 胡晓峰. 系统集成与系统综合集成[J]. 测控技术, 1999, 18(9): 11-13. doi: 10.3969/j.issn.1000-8829.1999.09.004

    HU X F. System integration and system meta synthesis[J]. Measurement & Control Technology, 1999, 18(9): 11-13(in Chinese). doi: 10.3969/j.issn.1000-8829.1999.09.004
    [43] Lockheed Martin. New tactical ISR satellites provide global, persistent support for warfighters[EB/OL]. [2021-09-01]. https://news.lockheedmartin.com/tactical-isr-satellites.
    [44] HU G, LI X, ZHANG G. Research on space mosaic reconfigurable system based on MAS[C]//2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Piscataway: IEEE Press, 2021, 4: 1977-1981.
    [45] PETRICK D, ESPINOSA D, RIPLEY R, et al. Adapting the reconfigurable spacecube processing system for multiple mission applications[C]//2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-20.
    [46] Sebastian Moss. HPE’s spaceborne computer survives a year on the International Space Station[EB/OL]. [2021-09-01]. https://www.datacenterdynamics.com/en/analysis/hpes-spaceborne-computer-survives-year-iss/.
    [47] 舒娜, 刘波, 林伟伟, 等. 分布式机器学习平台与算法综述[J]. 计算机科学, 2019, 46(3): 9-18. doi: 10.11896/j.issn.1002-137X.2019.03.002

    SHU N, LIU B, LIN W W, et al. Survey of distributed machine learning platforms and algorithms[J]. Computer Science, 2019, 46(3): 9-18(in Chinese). doi: 10.11896/j.issn.1002-137X.2019.03.002
    [48] 顾炯炯. 云计算架构技术与实践[M]. 北京: 清华大学出版社, 2014.

    GU J J. Cloud computing architecture technology and practice[M]. Beijing: Tsinghua University Press, 2014(in Chinese).
    [49] 李德仁. 数字孪生城市:智慧城市建设的新高度[J]. 中国勘察设计, 2020(10): 13-14. doi: 10.3969/j.issn.1006-9607.2020.10.006

    LI D R. Digital twin city: New height of smart city construction[J]. China Engineering Consulting, 2020(10): 13-14(in Chinese). doi: 10.3969/j.issn.1006-9607.2020.10.006
    [50] 赵秋艳, 胡朝斌, 陈川, 等. 低轨大规模星座的机遇与挑战[J]. 空间碎片研究, 2020, 20(1): 1-9.

    ZHAO Q Y, HU C B, CHEN C, et al. Opportunities and challenges of large-scale LEO constellation[J]. Space Debris Research, 2020, 20(1): 1-9(in Chinese).
    [51] 王翔, 申志伟, 朱肖曼, 等. 卫星互联网组网技术研究[J]. 信息通信技术, 2021, 15(2): 36-43. doi: 10.3969/j.issn.1674-1285.2021.02.006

    WANG X, SHEN Z W, ZHU X M, et al. Research on networking technology of satellite internet[J]. Information and Communications Technologies, 2021, 15(2): 36-43(in Chinese). doi: 10.3969/j.issn.1674-1285.2021.02.006
    [52] 唐杰. 浅谈人工智能的下一个十年[J]. 智能系统学报, 2020, 15(1): 187-192. doi: 10.11992/tis.202005035

    TANG J. On the next decade of artificial intelligence[J]. CAAI Transactions on Intelligent Systems, 2020, 15(1): 187-192(in Chinese). doi: 10.11992/tis.202005035
    [53] 向尚, 陈盈果, 李国梁, 等. 卫星自主与协同任务调度规划综述[J]. 自动化学报, 2019, 45(2): 252-264. doi: 10.16383/j.aas.c180068

    XIANG S, CHEN Y G, LI G L, et al. Review on satellite autonomous and collaborative task scheduling planning[J]. Acta Automatica Sinica, 2019, 45(2): 252-264(in Chinese). doi: 10.16383/j.aas.c180068
    [54] 刘扬阳, 吕群波, 谭政, 等. 基于软件定义微纳卫星的多模式计算光学成像技术[J]. 北京航空航天大学学报, 2018, 44(12): 2463-2469. doi: 10.13700/j.bh.1001-5965.2018.0376

    LIU Y Y, LYU Q B, TAN Z, et al. Multi-mode computational optical imaging technology based on software-defined micro-nano satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2463-2469(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0376
    [55] 王密, 杨芳. 智能遥感卫星与遥感影像实时服务[J]. 测绘学报, 2019, 48(12): 1586-1594.

    WANG M, YANG F. Intelligent remote sensing and remote sensing image real-time service[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1586-1594(in Chinese).
    [56] 许轲, 吴凤鸽, 赵军锁. 基于深度强化学习的软件定义卫星姿态控制算法[J]. 北京航空航天大学学报, 2018, 44(12): 2651-2659. doi: 10.13700/j.bh.1001-5965.2018.0357

    XU K, WU F G, ZHAO J S. Software defined satellite attitude control algorithm based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2651-2659(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0357
    [57] 石乾乾, 张艳, 赵鹏, 等. 一种高效利用天基激光能量清除空间碎片的方法[J]. 北京航空航天大学学报, 2018, 44(12): 2621-2627. doi: 10.13700/j.bh.1001-5965.2018.0241

    SHI Q Q, ZHANG Y, ZHAO P, et al. A method of efficiently using space-based laser energy to remove space debris[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2621-2627(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0241
    [58] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256. doi: 10.3724/SP.J.1218.2012.00242

    LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256(in Chinese). doi: 10.3724/SP.J.1218.2012.00242
    [59] 杜永浩, 王凌, 邢立宁. 空天无人系统智能规划技术综述[J]. 系统工程学报, 2020, 35(3): 416-432. doi: 10.13383/j.cnki.jse.2020.03.011

    DU Y H, WANG L, XING L N. Intelligent planning technologies for unmanned aerospace system: A literature review[J]. Journal of Systems Engineering, 2020, 35(3): 416-432(in Chinese). doi: 10.13383/j.cnki.jse.2020.03.011
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  117
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 录用日期:  2021-10-18
  • 网络出版日期:  2021-11-02
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答