留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变弯度后缘的机翼阵风响应减缓数值研究

尉濡恺 戴玉婷 杨超 于思恒

尉濡恺,戴玉婷,杨超,等. 基于变弯度后缘的机翼阵风响应减缓数值研究[J]. 北京航空航天大学学报,2023,49(7):1864-1874 doi: 10.13700/j.bh.1001-5965.2021.0563
引用本文: 尉濡恺,戴玉婷,杨超,等. 基于变弯度后缘的机翼阵风响应减缓数值研究[J]. 北京航空航天大学学报,2023,49(7):1864-1874 doi: 10.13700/j.bh.1001-5965.2021.0563
WEI R K,DAI Y T,YANG C,et al. Numerical study of wing gust response alleviation based on camber morphing trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1864-1874 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0563
Citation: WEI R K,DAI Y T,YANG C,et al. Numerical study of wing gust response alleviation based on camber morphing trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1864-1874 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0563

基于变弯度后缘的机翼阵风响应减缓数值研究

doi: 10.13700/j.bh.1001-5965.2021.0563
基金项目: 国家自然科学基金(11672018)
详细信息
    作者简介:

    尉濡恺 男,硕士。主要研究方向:变体飞行器设计

    戴玉婷 女,博士,副教授,博士生导师。主要研究方向:气动弹性力学

    杨超 男,博士,教授,博士生导师。主要研究方向:气动弹性力学

    通讯作者:

    E-mail:yutingdai@buaa.edu.cn

  • 中图分类号: V211.47;TB553

Numerical study of wing gust response alleviation based on camber morphing trailing edge

Funds: National Natural Science Foundation of China (11672018)
More Information
  • 摘要:

    针对带有变弯度后缘的机翼建立了阵风响应分析的数学模型,并开展了阵风响应减缓的仿真研究。采用计算流体力学(CFD)方法计算变弯度后缘给定动态偏转运动下的广义非定常气动力,并基于状态观测器法辨识CFD数据建立后缘动态偏转下的广义气动力模型,采用面元法计算模态运动、阵风引起的广义气动力,利用广义预测控制(GPC)方法设计阵风减缓控制律,在此基础上对变弯度后缘与传统铰链舵面动态气动力特性进行对比。仿真结果表明:基于变弯度后缘的GPC方法能够有效减缓由阵风引起的机翼翼尖加速度响应,翼尖加速度减缓效率为44.33%;相比传统铰链舵面,变弯度后缘偏转时弦向剖面上下表面压力分布更连续,相同舵偏下对机翼动态气动力影响更大,阵风响应减缓效率也更高,采用变弯度后缘进行阵风减缓具有更为广阔的应用前景。

     

  • 图 1  变弯度机翼几何模型

    Figure 1.  Camber morphing wing geometry model

    图 2  前4阶模态振型

    Figure 2.  The first four modes shape

    图 3  流域尺寸及翼面网格示意图

    Figure 3.  Schematic diagram of watershed size and airfoil mesh

    图 4  流场特性分析

    Figure 4.  Flow field characteristic analysis

    图 5  变弯度后缘偏转广义模态气动力辨识结果

    Figure 5.  Identification result of generalized modal aerodynamic force of trailing edge deflection

    图 6  不同后缘运动幅值气动力预测

    Figure 6.  Aerodynamic prediction of different trailing edge motion amplitudes

    图 7  闭环阵风响应减缓仿真结果

    Figure 7.  Simulation results of closed-loop gust response alleviation

    图 8  铰链舵面与变弯度后缘动态气动力对比

    Figure 8.  Comparison of aerodynamic forces between hinged flap and camber morphing trailing edge

    图 9  铰链舵面偏转广义模态气动力辨识结果

    Figure 9.  Identification result of generalized modal aerodynamic force of hinged flap deflection

    图 10  铰链舵面闭环阵风响应减缓仿真结果

    Figure 10.  Simulation results of closed-loop gust response alleviation based on hinged flap

    表  1  前4阶模态频率

    Table  1.   Frequency of the first four modes

    模态阶数模态描述模态频率/Hz
    1机翼面外一弯2.77
    2机翼面内一弯13.45
    3机翼面外二弯16.31
    4机翼一扭20.25
    下载: 导出CSV

    表  2  网格无关性计算

    Table  2.   Grid-independent computing

    网格名称网格数量升力系数
    Coarse420万0.091 8
    Medium538万0.083 2
    Fine631万0.083 4
    下载: 导出CSV
  • [1] RIVERO A E, FOURNIER S, MANOLESOS M, et al. Experimental aerodynamic comparison of active camber morphing and trailing-edge flaps[J]. AIAA Journal, 2021, 59(7): 2627-2640.
    [2] 祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42.

    ZHU L Q, SUN G K, LI H, et al. Intelligent and flexible morphing wing technology: A review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42(in Chinese).
    [3] HUNTLEY S J, WOODS B K, ALLEN C B. Computational analysis of the aerodynamics of camber morphing: AIAA 2019-2914[R]. Reston: AIAA, 2019.
    [4] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Progress on gust load alleviation wind tunnel experiment and aeroservoelastic model validation for a flexible wing with variable camber continuous trailing edge flap system: AIAA 2020-0214[R]. Reston: AIAA, 2020.
    [5] TAL E A, NGUYEN N T. Unsteady aeroservoelastic modeling of flexible wing generic transport aircraft with variable camber continuous trailing edge flap: AIAA 2015-2722[R]. Reston: AIAA, 2015.
    [6] NGUYEN N, TING E, LEBOFSKY S. Aeroelastic analysis of a flexible wing wind tunnel model with variable camber continuous trailing edge flap design[C]//AIAA Science and Technology Forum and Exposition. Reston: AIAA, 2015: 1405.
    [7] TING E, CHAPARRO D, NGUYEN N, et al. Optimization of variable-camber continuous trailing-edge flap configuration for drag reduction[J]. Journal of Aircraft, 2018, 55(6): 2217-2239. doi: 10.2514/1.C034810
    [8] HERRERA C Y, SPIVEY N D, LUNG S, et al. Aeroelastic airworthiness assessment of the adaptive compliant trailing edge flaps[C]//Proceedings of the 46th Society of Flight Test Engineers International Symposium, 2015: 14-17.
    [9] KOTA S, FLICK P, COLLIER F S. Flight testing of FlexFloilTM adaptive compliant trailing edge[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 0036.
    [10] 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002

    CHEN L, WU Z G, YANG C, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002
    [11] DHILEEP K, KUMAR D, GHOSH S, et al. Numerical study of camber morphing in NACA0012 airfoil: AIAA 2020-2781[R]. Reston: AIAA, 2020.
    [12] ULLAH J, LUTZ T, KLUG L, et al. Active gust load alleviation by combined actuation of trailing edge and leading edge flap at transonic speeds: AIAA 2021-1831[R]. Reston: AIAA, 2021.
    [13] 顾宁, 陆志良, 郭同庆, 等. 阵风响应及减缓的非定常数值模拟[J]. 航空计算技术, 2012, 42(3): 49-53. doi: 10.3969/j.issn.1671-654X.2012.03.013

    GU N, LU Z L, GUO T Q, et al. Gust response and alleviation analysis of airfoil[J]. Aeronautical Computing Technique, 2012, 42(3): 49-53(in Chinese). doi: 10.3969/j.issn.1671-654X.2012.03.013
    [14] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6): 818-823. doi: 10.3969/j.issn.1000-2758.2010.06.003

    XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6): 818-823(in Chinese). doi: 10.3969/j.issn.1000-2758.2010.06.003
    [15] ZAIDE A, RAVEH D. Numerical simulation and reduced-order modeling of airfoil gust response[J]. AIAA Journal, 2006, 44(8): 1826-1834. doi: 10.2514/1.16995
    [16] 张伟伟, 叶正寅, 杨青, 等. 基于ROM技术的阵风响应分析方法[J]. 力学学报, 2008, 40(5): 593-598. doi: 10.3321/j.issn:0459-1879.2008.05.003

    ZHANG W W, YE Z Y, YANG Q, et al. Gust response analysis using CFD-based reduced order models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 593-598(in Chinese). doi: 10.3321/j.issn:0459-1879.2008.05.003
    [17] 杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153. doi: 10.3321/j.issn:0459-1879.2008.02.001

    YANG G W, WANG J K. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153(in Chinese). doi: 10.3321/j.issn:0459-1879.2008.02.001
    [18] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4): 1103-1111.

    NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1103-1111(in Chinese).
    [19] 杨阳, 杨超, 吴志刚, 等. 考虑舵机时滞的阵风减缓主动控制律设计[J]. 北京航空航天大学学报, 2020, 46(12): 2236-2244. doi: 10.13700/j.bh.1001-5965.2019.0635

    YANG Y, YANG C, WU Z G, et al. Design of gust alleviation active control law considering the time-delay of servo actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2236-2244(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0635
    [20] DAI Y T, YANG C. GPC-based gust response alleviation for aircraft model adapting to various flow velocities in the wind tunnel[J]. Shock and Vibration, 2015, 2015: 348971.
    [21] MOULIN B, KARPEL M. Gust loads alleviation using special control surfaces[J]. Journal of Aircraft, 2007, 44(1): 17-25. doi: 10.2514/1.19876
    [22] 刘晓燕. 基于非定常气动力降阶模型的气动弹性研究[D]. 北京: 北京航空航天大学, 2011: 25-33.

    Liu X Y. Aeroelastic rearch based on unsteady aerodynamic reduced order model[D]. Beijing: Beihang University, 2011:25-33(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  57
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 录用日期:  2021-11-26
  • 网络出版日期:  2022-01-27
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答