留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境下碳纤维层合板拉伸疲劳性能

许名瑞 曾本银 熊欣 孟庆春 程小全

许名瑞,曾本银,熊欣,等. 湿热环境下碳纤维层合板拉伸疲劳性能[J]. 北京航空航天大学学报,2023,49(7):1614-1622 doi: 10.13700/j.bh.1001-5965.2021.0565
引用本文: 许名瑞,曾本银,熊欣,等. 湿热环境下碳纤维层合板拉伸疲劳性能[J]. 北京航空航天大学学报,2023,49(7):1614-1622 doi: 10.13700/j.bh.1001-5965.2021.0565
XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0565
Citation: XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0565

湿热环境下碳纤维层合板拉伸疲劳性能

doi: 10.13700/j.bh.1001-5965.2021.0565
详细信息
    通讯作者:

    E-mail:xiaoquan_cheng@buaa.edu.cn

  • 中图分类号: V215.5+2;TB332

Tensile fatigue properties of carbon fiber laminates in hygrothermal environments

More Information
  • 摘要:

    湿热环境是影响复合材料层合板力学性能的主要因素之一,研究湿热环境对复合材料结构的影响对于保证飞行结构安全具有非常重要的工程应用意义。研究碳纤维复合材料层合板在室温干态(RTD)、低温干态(CTD)和高温湿态(ETW)3种环境条件下的拉伸疲劳性能,获得3种环境下的S-N曲线与层合板疲劳破坏模式。在此基础上,建立层合板有限元分析模型,对其疲劳性能进行研究,分析讨论温度及湿度对层合板疲劳性能的影响,建立层合板疲劳寿命环境影响因子的确定方法。结果表明:湿热环境对正交层合板的拉伸疲劳性能影响很大,疲劳寿命为106次时,与RTD环境相比,CTD环境下层合板的疲劳强度下降了2.76%,而ETW环境下下降达到23.77%;ETW和RTD环境下破坏模式以纤维断裂和分层为主,而CTD环境下却几乎全为纤维断裂破坏;S-N曲线包括疲劳强度快速下降和缓慢下降2个阶段;温度对疲劳性能的影响要明显强于湿度,温度超过45 ℃时湿度对疲劳性能的影响进入强影响区。

     

  • 图 1  拉伸静力与疲劳试验件

    Figure 1.  Tensile static force and fatigue specimens

    图 2  碳纤维CF3052/3238A拉伸疲劳试验装置

    Figure 2.  Tensile fatigue test device of carbon fiber CF3052/3238A

    图 3  有限元模型

    Figure 3.  Finite element model

    图 4  疲劳仿真分析流程图

    Figure 4.  Flow chart of fatigue simulation analysis

    图 5  正交层合板3种湿热环境下的S-N曲线

    Figure 5.  S-N curve of orthogonal laminate under three different hygrothermal environments

    图 6  正交层合板3种湿热环境下的正规则化S-N曲线

    Figure 6.  Normalized fatigue S-N curve of orthogonal laminate under three different hygrothermal environments

    图 7  正交铺层层合板3种环境下的疲劳破坏形貌

    Figure 7.  Fatigue damage morphology of orthogonal laminates under three different hygrothermal environments

    图 8  正交铺层层合板3种环境下沿厚度疲劳破坏形貌

    Figure 8.  Fatigue damage morphology along thickness of orthogonal laminates under three different hygrothermal environments

    图 9  有限元计算和试验结果最终破坏模式对比

    Figure 9.  Comparison of final damage modes between finite element calculation and test results

    图 10  不同湿热状态下寿命循环次数

    Figure 10.  Number of life cycles under different hygrothermal conditions

    图 11  对数寿命循环次数归一化

    Figure 11.  Normalization of logarithmic life cycles

    表  1  试验类型和试验件数量

    Table  1.   Test type and number of test specimer

    试验类型试验件数量
    RTDCTDETW
    吸湿试验3
    拉伸静力试验333
    拉-拉疲劳试验161616
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    $ E_{{11}}^{0} $/GPa$ E_{{22}}^{0} $/GPa$ X_T^{0} $/MPa$ Y_T^{0} $/MPa$ G_{{12}}^{0} $/GPa
    54.354.36806803.26
    $ S_{{12}}^{0} $/GPa$ \rho $/(g.cm−3)${\rho _{{\rm{m}}} }$/(g.cm−3)${V_{{\rm{m}}} }$/%
    1161.421.2345
    下载: 导出CSV

    表  3  经验常数

    Table  3.   Empirical constants

    Tg0 /T0 /g /abcd
    1202050.050.150.220.56
    下载: 导出CSV

    表  4  材料弹性工程常数

    Table  4.   Elastic engineering constants of materials

    E1/GPaE2/GPaE3/GPaG12/GPaG13/GPaG23/GPa
    54.354.333003.262.172.17
    ν12ν13ν23XT/MPaXC/MPaYT/MPa
    0.040.010.01680614.29680
    YC/MPaS12/MPaS13/MPaS23/MPa
    614.29115.9873.573.5
    下载: 导出CSV

    表  5  3种湿热环境条件下拉伸静力试验结果

    Table  5.   Tensile static test results under three different hygrothermal environments

    环境最大载荷/kN拉伸强度均值/MPa弹性模量/GPa
    RTD48.39679.5854.3
    CTD50.53694.2454.1
    ETW45.05620.4152.5
    下载: 导出CSV

    表  6  3种湿热环境下的疲劳试验结果(应力比R=0.052 6)

    Table  6.   Fatigue test results under three different hygrothermal environments (Stress ratio R=0.052 6)

    湿热环境应力水平/%最大应力/MPa疲劳寿命/次
    RTD85.1, 83.1, 83.1, 83.1578, 564.4, 564.4, 564.4,3 699, 508 210, 753 116, 1 200 331
    87.1, 87.1, 85.1, 85.1591.6, 591.6, 578, 57843 027, 545 041, 1 200 200, 41 123
    90.1, 90.1, 90.1, 89.1612, 612, 612, 605.2159 724, 22 975, 67 479, 378 378
    94.1, 92.1, 92.1, 92.1639.2, 625.6, 625.6, 625.61 836, 33 665, 8 491, 17 341
    CTD80555.21 130 123, 1 072 928, 466 931, 760 758
    83576.02113 964, 141 959, 241 866, 155 203
    85589.997 129, 103 678, 19 140, 3 610
    87603.7812 530, 211 101, 7 681, 4 500
    ETW70555.21 305 108, 356 100, 98 753, 755 874
    75576.0133 981, 678 850, 578 040, 390 576
    84589.947 578, 36 791, 11 762, 88 784
    86603.836 877, 15 680, 7 160, 4 955
    下载: 导出CSV

    表  7  有限元模拟预测值与试验值对比

    Table  7.   Comparison between predicted values of finite element simulation and test values

    有限元数值 循环次数 对数寿命
    试验值 1# 1200200 6.08
    2# 753 116 5.87
    3# 508 210 5.71
    均值 820 509 5.89
    预测值 635 074 5.80
     注:有限元预测值与试验值均值的循环次数误差为22.6%,对数寿命误差为1.5%。
    下载: 导出CSV
  • [1] 陈浩然, 息志臣, 贺晓东. 复合材料层合板的热变形非线性分析[J]. 大连理工大学学报, 1994, 34(3): 280-286.

    CHEN H R, XI Z C D, HE X D. Nonlinear analysis of thermal deformations of composite laminates under transient thermal loading[J]. Journal of Dalian University of Technology, 1994, 34(3): 280-286 (in Chinese).
    [2] LIU S F, CHENG X Q, ZHANG Q, et al. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J]. Composites Part B:Engineering, 2016, 91: 431-440. doi: 10.1016/j.compositesb.2016.01.051
    [3] SETHI S, RAY B C. Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability[J]. Advances in Colloid and Interface Science, 2015, 217: 43-67. doi: 10.1016/j.cis.2014.12.005
    [4] ZHANG Q, CHENG X Q, ZHANG J, et al. Experimental and numerical investigation of composite box joint under tensile load[J]. Composites Part B:Engineering, 2016, 107: 75-83. doi: 10.1016/j.compositesb.2016.09.056
    [5] 沙勐, 熊欣, 许名瑞, 等. 湿热环境对复合材料疲劳性能的影响[J]. 高科技纤维与应用, 2017, 42(4): 37-43. doi: 10.3969/j.issn.1007-9815.2017.04.007

    SHA M, XIONG X, XU M R, et al. Effect of hygrothermal environment on fatigue properties of composite materials[J]. Hi-Tech Fiber and Application, 2017, 42(4): 37-43(in Chinese). doi: 10.3969/j.issn.1007-9815.2017.04.007
    [6] MEZIERE Y, BUNSELL A R, FAVRY Y, et al. Large strain cyclic fatigue testing of unidirectional carbon fibre reinforced epoxy resin[J]. Composites Part A:Applied Science and Manufacturing, 2005, 36(12): 1627-1636. doi: 10.1016/j.compositesa.2005.03.020
    [7] COSTA M L, REZENDE M C, DE ALMEIDA S F M. Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials, 2005, 39(21): 1943-1961. doi: 10.1177/0021998305051807
    [8] SHEN C H, SPRINGER G S. Effects of moisture and temperature on the tensile strength of composite materials[J]. Journal of Composite Materials, 1977, 11(1): 2-16. doi: 10.1177/002199837701100102
    [9] 李嘉禄, 杨红娜, 寇长河. 三维编织复合材料的疲劳性能[J]. 复合材料学报, 2005, 22(4): 172-176. doi: 10.3321/j.issn:1000-3851.2005.04.029

    LI J L, YANG H N, KOU C H. Fatigue properties of three dimensional braiding composites[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 172-176(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.029
    [10] 马丽婷, 陈新文, 邓立伟, 等. 复合材料疲劳性能研究[J]. 航空制造技术, 2013, 53(23): 73-74. doi: 10.3969/j.issn.1671-833X.2013.23.010

    MA L T, CHEN X W, DENG L W, et al. Fatigue performance of composites[J]. Aeronautical Manufacturing Technology, 2013, 53(23): 73-74(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.23.010
    [11] KAWAI M, YAJIMA S, HACHINOHE A, et al. High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices[J]. Composites Science and Technology, 2001, 61(9): 1285-1302. doi: 10.1016/S0266-3538(01)00027-6
    [12] TURON A, COSTA J, CAMANHO P P, et al. Simulation of delamination in composites under high-cycle fatigue[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11): 2270-2282. doi: 10.1016/j.compositesa.2006.11.009
    [13] MUSTAFA G, CRAWFORD C, SULEMAN A. Fatigue life prediction of laminated composites using a multi-scale M-LaF and Bayesian inference[J]. Composite Structures, 2016, 151: 149-161. doi: 10.1016/j.compstruct.2016.02.024
    [14] 张文姣. 纤维增强复合材料的疲劳损伤模型及分析方法[D]. 哈尔滨: 哈尔滨工业大学, 2015 : 79-90.

    ZHANG W J. Fatigue damage model and analysis method of fiber reinforced composites[D]. Harbin: Harbin Institute of Technology, 2015: 79-90 (in Chinese).
    [15] 张祥林, 孟庆春, 许名瑞, 等. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177. doi: 10.11868/j.issn.1001-4381.2020.000662

    ZHANG X L, MENG Q C, XU M R, et al. Tensile fatigue properties of carbon fiber reinforced composite orthogonal laminates after moisture absorption[J]. Journal of Materials Engineering, 2021, 49(8): 169-177(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000662
    [16] 国防科学技术工业委员会. 碳纤维树脂基复合材料层合板疲劳试验方法: GJB 2637-96[S]. 北京: 中国航空工业总公司, 1996: 1-7.

    Commission of Science, Technology and Industry for National Defense. Test methods for fatigue of carbon fiber resin matrix composite laminates: GJB 2637-96[S]. Beijing: Aviation Industry Corporation of China, 1996:1-7(in Chinese).
    [17] American Society of Testing Materials International. D3479 Stanard test method for tension-tension fatigue of polymer matrix composite materials: ASTM D3479/D3479M-2012[S]. West Conshohocken: American Society of Testing Materials International, 2012: 1-6
    [18] REIFSNIDER K L, HENNEKE E G, STINCHCOMB W W, et al. Damage mechanics and nde of composite laminates[M]. Mechanics of Composite Materials. Amsterdam: Elsevier, 1983: 399-420.
    [19] 吴富强, 姚卫星. 纤维增强复合材料剩余强度衰减模型[J]. 南京航空航天大学学报, 2008, 40(4): 517-520. doi: 10.3969/j.issn.1005-2615.2008.04.020

    WU F Q, YAO W X. Residual strength degradation model of fiber reinforced plastic[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4): 517-520(in Chinese). doi: 10.3969/j.issn.1005-2615.2008.04.020
    [20] XU M R, HUANG J J, ZENG B Y, et al. Effect of Notch on static and fatigue properties of T800 fabric reinforced composites[J]. Science and Engineering of Composite Materials, 2020, 27(1): 335-345.
    [21] SPINDEL J, HAIBACH E. Some considerations in the statistical determination of the slope of SN curves[M]. Statistical Analysis of Fatigue Data. West Conshohocken: American Society of Testing Materials International, 1981.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  53
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2021-11-26
  • 网络出版日期:  2021-12-15
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答