留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速再入飞行器气动布局多目标优化

樊博璇 陈桂明 曹逸群

樊博璇,陈桂明,曹逸群. 高超声速再入飞行器气动布局多目标优化[J]. 北京航空航天大学学报,2023,49(7):1639-1650 doi: 10.13700/j.bh.1001-5965.2021.0566
引用本文: 樊博璇,陈桂明,曹逸群. 高超声速再入飞行器气动布局多目标优化[J]. 北京航空航天大学学报,2023,49(7):1639-1650 doi: 10.13700/j.bh.1001-5965.2021.0566
FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0566
Citation: FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0566

高超声速再入飞行器气动布局多目标优化

doi: 10.13700/j.bh.1001-5965.2021.0566
基金项目: 国家自然科学基金(71601180)
详细信息
    通讯作者:

    E-mail:1092442646@qq.com

  • 中图分类号: V221+.3;TB553

Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle

Funds: National Natural Science Foundation of China (71601180)
More Information
  • 摘要:

    气动布局的多目标优化是飞行器设计中的关键技术。提出一种新的高超声速再入飞行器气动外形参数的多目标优化方法,证明外形优化对高超声速流下飞行器性能的影响。通过实例仿真对飞行器所受阻力和升力对制导性能影响进行详细验证分析,将飞行器落点圆概率偏差、末速大于500 m/s的占比、最大飞行过载小于60g的占比这3个性能指标作为优化目标,将升力特性作为中间参数,将气动布局优化问题分解为2个子问题,通过基于搜索算法的升力特性优化和基于改进的模拟退火算法的外形参数优化,减少优化计算时间、提升计算效率、实现对飞行器主体和襟翼的气动布局优化、获得高超声速流下的最佳飞行器外形。仿真结果表明:在确定的约束条件下,优化算法增加了飞行器在超音速流下的气动升力,有效提高了升阻比。在不影响最大飞行过载的前提下,优化后的飞行器表现出更高的气动性能,显著提升了命中精度,同时末速也满足指标要求,制导系统性能得到有效改善。

     

  • 图 1  高超声速再入飞行器外形三视图

    Figure 1.  Three views of hypersonic reentry vehicle

    图 2  飞行器无襟翼状态几何模型

    Figure 2.  Geometric model of aircraft without flap

    图 3  飞行器几何模型

    Figure 3.  Aircraft geometric model

    图 4  数值仿真对比

    Figure 4.  Comparison of numerical simulation

    图 5  残差相对偏差e

    Figure 5.  Relative error of residual e

    图 6  算法流程

    Figure 6.  Algorithm process

    图 7  标称条件下优化前后仿真曲线

    Figure 7.  Simulation curves before and after optimization under nominal conditions

    表  1  飞行器气动外形尺寸

    Table  1.   Aircraft aerodynamic dimensions

    飞行器编号$\vartheta $/(°)$l$/mm$\delta $/(°)$h$/mm
    17.5
    27.54004560
    37.54004585
    47.54006060
    57.54006085
    67.56004560
    77.56004585
    87.56006060
    97.56006085
    10-188.5
    19-279.5
    下载: 导出CSV

    表  2  计算选取的飞行器无襟翼下气动特性状态

    Table  2.   Aerodynamic characteristic states of aircraft without flap selected for calculation

    高度H/km马赫数$Ma$迎角$\alpha $ /(°)
    8029,28,27,2610,9,8,7,5,4,3,2,1,0
    7028,27,26,2510,9,8,7,5,4,3,2,1,0
    6027,26,25,24,2310,9,8,7,5,4,3,2,1,0
    5026,25,24,23,22,2110,9,8,7,5,4,3,2,1,0
    4026,25,24,23,22,2110,9,8,7,5,4,3,2,1,0
    3026,25,24,23,22,2110,9,8,7,5,4,3,2,1,0
    2523,21,20,18,1613,12,10,9,8,7,5,4,3,2,1,0
    2020,19,18,17,16,1513,12,10,9,8,7,5,4,3,2,1,0
    1516,14,13,12,1013,12,10,9,8,7,5,4,3,2,1,0
    1014,13,12,11,1013,12,10,9,8,7,5,4,3,2,1,0
    58,7,6,5,416,15,13,12,10,9,8,7,5,4,3,2,1,0
    05,4,3,220,18,16,15,13,12,10,9,8,7,5,4,2,0
    下载: 导出CSV

    表  3  带襟翼飞行器气动特性计算结果

    Table  3.   Calculation results aerodynamic characteristic of aircraft with flap

    高度H/km
    马赫数$Ma$
    迎角$\alpha $ /(°)
    ($\beta {\text{ = }}0^\circ $)
    侧滑角$\beta $ /(°)
    ($\alpha {\text{ = }}0^\circ $)
    8028−10,0,105,10
    6026−10,0,105,10
    4025,23−10,0,105,10
    3024,22−10,0,105,10
    2017,15−10,0,105,10
    1012,10−10,0,105,10
    下载: 导出CSV

    表  4  优化前后的设计变量取值

    Table  4.   Value of design variables before and after optimization

    阶段$\vartheta $
    /(°)
    $l$
    /mm
    $\delta $
    /(°)
    $h$
    /mm
    优化前7.590056 120
    优化后7.547386458.1741119.3
    下载: 导出CSV

    表  5  优化前后的升阻特性

    Table  5.   Lift and drag characteristics before and after optimization

    Ma阻力系数 升力系数
    优化前优化后优化前优化后
    10.557 30.558 9 0.263 40.288 5
    20.430 10.431 1 0.217 80.240 0
    40.243 00.243 6 0.143 60.160 2
    60.187 40.188 1 0.126 00.143 0
    80.169 40.170 6 0.106 50.123 6
    100.151 50.152 9 0.094 50.113 1
    120.131 30.132 2 0.057 50.073 8
    140.158 10.159 3 0.099 20.113 1
    160.168 30.169 5 0.110 40.124 2
    180.153 50.154 7 0.087 50.096 8
    200.123 30.124 4 0.110 40.121 8
    下载: 导出CSV

    表  6  随机偏差取值范围

    Table  6.   Range of random deviation

    随机偏差变量取值范围
    初始弹道倾角偏差$ \Delta {\theta _0} $/(°)$[ - {0.4 },{0.4 }]$
    大气密度偏差比例系数$ \Delta {P_\rho } $/%$[ - 10 ,10]$
    法向力系数偏差比例系数$ \Delta {P_{{\text{CN}}}} $/%$[ - 15 ,15]$
    轴向力系数偏差比例系数$ \Delta {P_{{\text{CA}}}} $/%$[ - 15 ,15 ]$
    配平迎角偏差$ \Delta {\alpha _{\text{T}}} $/(°)$[ - {2.8 },{2.8 }]$
    法向力系数常值偏差$ \Delta {\text{C}}{{\text{N}}_0} $$ [ - 0.015,0.015] $
    轴向力系数常值偏差$ \Delta {\text{C}}{{\text{A}}_0} $$ [ - 0.015,0.015] $
    下载: 导出CSV

    表  7  随机偏差变量的正态分布规律

    Table  7.   Normal distribution law of random deviation variables

    随机偏差变量正态分布规律
    初始弹道倾角偏差$ \Delta {\theta _0} \sim N\left( {0,\sigma _{{\theta _0}}^2} \right) $,$ {\sigma _{{\theta _0}}} = 0.4/3 $
    大气密度偏差比例系数$ \Delta {P_\rho } \sim N\left( {0,\sigma _{{P_\rho }}^2} \right) $,$ {\sigma _{{P_\rho }}} = 0.1/3 $
    法向力系数偏差比例系数$ \Delta {P_{{\text{CN}}}} \sim N\left( {0,\sigma _{{P_{{\text{CN}}}}}^2} \right) $,$ {\sigma _{{P_{{\text{CN}}}}}} = 0.15/3 $
    轴向力系数偏差比例系数$ \Delta {P_{{\text{CA}}}} \sim N\left( {0,\sigma _{{P_{{\text{CA}}}}}^2} \right) $,$ {\sigma _{{P_{{\text{CA}}}}}} = 0.15/3 $
    配平迎角偏差$ \Delta {\alpha _{\text{T}}} \sim N\left( {0,\sigma _{{\alpha _{\text{T}}}}^2} \right) $,${\sigma _{ {\alpha _{\text{T} } } } } = {2.8}/3$
    法向力系数常值偏差$ \Delta {\text{C}}{{\text{N}}_0} \sim N\left( {0,\sigma _{{\text{C}}{{\text{N}}_0}}^2} \right) $,$ {\sigma _{{\text{C}}{{\text{N}}_{\text{0}}}}} = 0.015/3 $
    轴向力系数常值偏差$ \Delta {\text{C}}{{\text{A}}_0} \sim N\left( {0,\sigma _{{\text{C}}{{\text{A}}_0}}^2} \right) $,$ {\sigma _{{\text{C}}{{\text{A}}_0}}} = 0.015/3 $
    下载: 导出CSV

    表  8  优化前仿真数据统计

    Table  8.   Statistics of simulation data before optimization

    落点偏差/km落点偏差
    分布占比/%
    末速/(m·s−1)末速分布
    占比/%
    末弹道倾角/(°)末弹道倾角
    分布占比/%
    最大过载最大过载
    分布占比/%
    [0,0.1)88.11[0,200)0[−90,−70)0[20g,40g)53.15
    [0.1,0.2)5.59[200,300)0[−70,−55)6.29[40g,50g)26.57
    [0.2,0.5)0.70[300,400)0[−55,−40)28.67[50g,55g)9.79
    [0.5,1)0[400,500)0[−40,−30)46.85[55g,60g)6.99
    [1,3)2.10[500,600)5.59[−30,−20)18.18[60g,65g)2.10
    [3,∞)3.50[600,∞)94.41[−20,0)0[65g,∞)1.40
    下载: 导出CSV

    表  9  优化后仿真数据统计

    Table  9.   Statistics of simulation data before optimization

    落点偏差/km落点偏差
    分布占比/%
    末速/(m·s−1)末速分布
    占比/%
    末弹道倾角/(°)末弹道倾角
    分布占比/%
    最大过载最大过载
    分布占比/%
    [0,0.1)88.61[0,200)0[−90,−70)1.27[20g,40g)53.16
    [0.1,0.2)8.23[200,300)0[−70,−55)6.96[40g,50g)24.05
    [0.2,0.5)1.27[300,400)0[−55,−40)29.11[50g,55g)11.39
    [0.5,1)0.63[400,500)0.63[−40,−30)46.20[55g,60g)6.33
    [1,3)0.63[500,600)3.80[−30,−20)16.46[60g,65g)3.80
    [3,∞)0.63[600,∞)95.57[−20,0)0[65g,∞)1.27
    下载: 导出CSV

    表  10  制导性能评估结果

    Table  10.   Guidance performance evaluation results

    类型CEP /m末速低于500 m/s
    的占比/%
    最大飞行过载
    理想值≤20026g
    优化前526.803.7g
    优化后215.40.615.2g
    下载: 导出CSV
  • [1] DECK S, DUVEAU P, D'ESPINEY P, et al. Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations[J]. Aerospace Science and Technology, 2002, 6(3): 171-183. doi: 10.1016/S1270-9638(02)01148-3
    [2] LÓPEZ D, DOMÍNGUEZ D, GONZALO J. Optimization of air-ejected rocket/missile geometries under validated supersonic flow field simulations[J]. AIP Conference Proceedings, 2014, 1637(1): 600-606.
    [3] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 62-75.

    QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 62-75(in Chinese).
    [4] 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 26-37. doi: 10.7527/S1000-6893.2018.21737

    SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 26-37(in Chinese). doi: 10.7527/S1000-6893.2018.21737
    [5] 车竞, 唐硕, 何开锋. 高超声速飞行器气动布局总体性能优化设计研究[J]. 空气动力学学报, 2009, 27(2): 214-219. doi: 10.3969/j.issn.0258-1825.2009.02.013

    CHE J, TANG S, HE K F. Research on aerodynamic configuration optimization of integral performance for hypersonic cruise vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(2): 214-219(in Chinese). doi: 10.3969/j.issn.0258-1825.2009.02.013
    [6] 刘文. 高超声速乘波体气动布局优化及稳定性研究[D]. 西安: 西北工业大学, 2018.

    LIU W. Aerodynamic layout optimization and stability study of hypersonic waverider [D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
    [7] 陈立立, 郭正, 侯中喜, 等. 组合式高超声速飞行器布局设计与优化分析[J]. 气体物理, 2019, 4(6): 29-39. doi: 10.19527/j.cnki.2096-1642.0777

    CHEN L L, GUO Z, HOU Z X, et al. Layout design and optimization analysis of combined hypersonic vehicle[J]. Physics of Gases, 2019, 4(6): 29-39(in Chinese). doi: 10.19527/j.cnki.2096-1642.0777
    [8] 唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2(1): 1-12. doi: 10.19527/j.cnki.2096-1642.2017.01.001

    TANG W, FENG Y, YANG X F, et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2(1): 1-12(in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.01.001
    [9] 徐永杰, 王志军, 吴国东, 等. 气动外形对火箭弹弹道特性影响的数值模拟研究[J]. 弹箭与制导学报, 2018, 38(4): 11-14. doi: 10.15892/j.cnki.djzdxb.2018.04.003

    XU Y J, WANG Z J, WU G D, et al. Numerical simulation research on effect of aerodynamic configuration on rocket projectile’s ballistics characteristics[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(4): 11-14(in Chinese). doi: 10.15892/j.cnki.djzdxb.2018.04.003
    [10] NGUYEN N V, TYAN M, LEE J W, et al. Investigations on missile configuration aerodynamic characteristics for design optimization[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(4): 210-218. doi: 10.2322/tjsass.57.210
    [11] VIDANOVIC N, RASUO B, DAMLJANOVIC D, et al. Validation of the CFD code used for determination of aerodynamic characteristics of nonstandard AGARD-B calibration model[J]. Thermal Science, 2014, 18(4): 1223-1233. doi: 10.2298/TSCI130409104V
    [12] SAHU J. CFD simulations of a finned projectile with microflaps for flow control[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-15.
    [13] OCOKOLJIC G, RASUO B, BENGIN A. Aerodynamic shape optimization of guided missile based on wind tunnel testing and computational fluid dynamics simulation[J]. Thermal Science, 2017, 21(3): 1543-1554. doi: 10.2298/TSCI150515184O
    [14] AGEEV N, PAVLENKO A. Minimization of body of revolution aerodynamic drag at supersonic speeds[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 246-256. doi: 10.1108/AEAT-02-2015-0052
    [15] VIDANOVIĆ N, RAŠUO B, KASTRATOVIĆ G, et al. Aerodynamic–structural missile fin optimization[J]. Aerospace Science and Technology, 2017, 65: 26-45. doi: 10.1016/j.ast.2017.02.010
    [16] KÖRPE D S, KANAT Ö Ö. Aerodynamic optimization of a UAV wing subject to weight, geometric, root bending moment, and performance constraints[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-14.
    [17] RIDDLE D B, HARTFIELD R J, BURKHALTER J E, et al. Genetic-algorithm optimization of liquid-propellant missile systems[J]. Journal of Spacecraft and Rockets, 2009, 46(1): 151-159. doi: 10.2514/1.30891
    [18] CAO R D, ZHANG X B. Multi-objective optimization of the aerodynamic shape of a long-range guided rocket[J]. Structural and Multidisciplinary Optimization, 2018, 57(4): 1779-1792. doi: 10.1007/s00158-017-1845-7
    [19] YANG Y R, JUNG S K, CHO T H, et al. Aerodynamic shape optimization system of a canard-controlled missile using trajectory-dependent aerodynamic coefficients[J]. Journal of Spacecraft and Rockets, 2012, 49(2): 243-249. doi: 10.2514/1.A32064
    [20] HE Y L, AGARWAL R K. Shape optimization of NREL S809 airfoil for wind turbine blades using a multi-objective genetic algorithm[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  51
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-02-14
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答