留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转惯性液压变换器的能效特性

陈晓明 朱玉川 凌杰 郑述峰 王玉文

陈晓明,朱玉川,凌杰,等. 旋转惯性液压变换器的能效特性[J]. 北京航空航天大学学报,2023,49(8):1982-1990 doi: 10.13700/j.bh.1001-5965.2021.0570
引用本文: 陈晓明,朱玉川,凌杰,等. 旋转惯性液压变换器的能效特性[J]. 北京航空航天大学学报,2023,49(8):1982-1990 doi: 10.13700/j.bh.1001-5965.2021.0570
CHEN X M,ZHU Y C,LING J,et al. Energy-efficiency characteristic investigation of rotational inertia hydraulic converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1982-1990 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0570
Citation: CHEN X M,ZHU Y C,LING J,et al. Energy-efficiency characteristic investigation of rotational inertia hydraulic converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1982-1990 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0570

旋转惯性液压变换器的能效特性

doi: 10.13700/j.bh.1001-5965.2021.0570
基金项目: 国家自然科学基金(51975275);江苏省重点研发计划(BE2021034); 南京航空航天大学直升机传动技术重点实验室自主课题(HTL-A-20G02)
详细信息
    通讯作者:

    E-mail:meeyczhu@nuaa.edu.cn

  • 中图分类号: TH137

Energy-efficiency characteristic investigation of rotational inertia hydraulic converter

Funds: National Natural Science Foundation of China (51975275); Primary Research & Development Plan of Jiangsu Province (BE2021034); National Key Laboratory of Science and Technology on Helicopter Transmission (Nanjing University of Aeronautics and Astronautics) (HTL-A-20G02)
More Information
  • 摘要:

    为探究旋转惯性液压变换器(RIHC)的主要性能及其能量转化机制,针对由等效两位三通快速切换阀驱动的旋转惯性液压变换器构型建立其理论分析模型。通过与传统比例液压系统(CHPS)对比实验,验证所建理论模型并给出两者能效差异。结果表明:所建理论模型可有效预测RIHC的主要性能,可通过系统吸油流量量化旋转惯性效应的大小,稳态吸油流量在有效占空比0.5时达到峰值。脉宽调制信号有效占空比控制模式下,随着飞轮转速、负载压力的增加,测得阀口节流损失与系统效率线性化增加。实验表明:负载压力在0~4 MPa范围内,RIHC相较于CHPS最高可减少89%的阀口节流损失,系统效率提升15.7%。

     

  • 图 1  RIHC的液压回路

    Figure 1.  Hydraulic circuit of RIHC

    图 2  RIHC内油液流动状态

    Figure 2.  Oil flow state within RIHC

    图 3  DFplus阀结构示意图

    Figure 3.  Diagram of DFplus valve structure

    图 4  RIHC 与CPHS 的实验液压回路

    Figure 4.  Experimental hydraulic circuit of RIHC and CPHS

    图 5  RIHC的吸油特性

    Figure 5.  Suction flow characteristics of RIHC

    图 6  RIHC的容积效率

    Figure 6.  Volumetric efficiency of RIHC

    图 7  RIHC的输出特性

    Figure 7.  Output characteristics of RIHC

    图 8  RIHC的能效特性

    Figure 8.  Energy-efficiency characteristics of RIHC

    图 9  CPHS的输出特性

    Figure 9.  Output characteristics of CPHS

    图 10  CPHS与RIHC阀口节流损失与系统效率实验对比

    Figure 10.  Experimental comparison of throttling loss and system efficiency of CPHS and RIHC

    表  1  DFplus阀主要参数

    Table  1.   Main parameters of DFplus valve

    参数数值
    公称流量Qn/ (L·min−1)25
    阶跃响应/ ms<3.5
    迟滞<0.05
    频响±5%信号/ Hz350
    驱动电压Vt/ V10
    下载: 导出CSV

    表  2  RIHC理论模型主要参数

    Table  2.   Main parameters of RIHC theoretical model

    参数数值
    电机转速vp/( r·min−1)1750
    液压泵排量Dp/( m3·rad−1)1.68×10−6
    供油压力pHs/MPa5.5
    供油压力pLs/MPa1.1
    马达排量Dm/(m3·rad−1)2.67×10−6
    阻尼系数Bm/(N·m·s·rad−1)0.0292
    飞轮惯量Im/(N·m·s2·rad−1)0.162
    电磁力Fm/N200
    流量系数Cds/CdL0.65
    初始位置xs0/mm0.05
    阀芯质量ms/kg0.1
    弹簧刚度ks/(N·m−1)20000
    黏性阻尼系数bs/(N·s·m−1)0.8
    有效过流面积AL/mm0.785
    圆孔数z4
    孔径dn/mm2.8
    管路内径dh/mm12.5
    空气含量γ0.05
    油液密度ρ/(kg·m−3)878
    油液动力黏度μ/(Pa·s)0.04025
    纯油弹性模量K/Pa8×109
    下载: 导出CSV
  • [1] YANG H Y, PAN M. Engineering research in fluid power: A review[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(6): 427-442. doi: 10.1631/jzus.A1500042
    [2] VACCA A. Energy efficiency and controllability of fluid power systems[J]. Energies, 2018, 11(5): 1169. doi: 10.3390/en11051169
    [3] 杨华勇, 王双, 张斌, 等. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505. doi: 10.13229/j.cnki.jdxbgxb201605017

    YANG H Y, WANG S, ZHANG B, et al. Development and prospect of digital hydraulic valve and valve control system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5): 1494-1505(in Chinese). doi: 10.13229/j.cnki.jdxbgxb201605017
    [4] LINJAMA M. Digital fluid power: State of the art[C]//Proceedings of the 12th Scandinavian International Conference on Fluid Power. Tampere: Tampere University of Technology, 2011.
    [5] BROWN F T. Switched reactance hydraulics: a new way to control fluid power[C]//Proceedings of the National Conference on Fluid Power. Chicago: National Fluid Power Association, 1987: 25-34.
    [6] YUAN C G, PAN M, PLUMMER A. A review of switched inertance hydraulic converter Technology[J]. Journal of Dynamic Systems, Measurement, and Control, 2020, 142(5): 050801. doi: 10.1115/1.4046103
    [7] KOGLER H, SCHEIDL R. Energy efficient linear drive axis using a hydraulic switching converter[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(9): 091010. doi: 10.1115/1.4033412
    [8] 陈晓明, 朱玉川, 高强, 等. 数字开关液压系统中流体惯性效应分析与实验[J]. 华中科技大学学报(自然科学版), 2020, 48(6): 70-76. doi: 10.13245/j.hust.200612

    CHEN X M, ZHU Y C, GAO Q, et al. Analysis and experiment of fluid inertia in digital switched hydraulic system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(6): 70-76(in Chinese). doi: 10.13245/j.hust.200612
    [9] PAN M, PLUMMER A, EL AGHA A. Theoretical and experimental studies of a switched inertance hydraulic system in a four-port high-speed switching valve configuration[J]. Energies, 2017, 10(6): 780. doi: 10.3390/en10060780
    [10] SELL N P, JOHNSTON D N, PLUMMER A R, et al. Control of a fast switching valve for digital hydraulics[C]//Proceedings from the 13th Scandinavian International Conference on Fluid Power. Linköping: Linköping University Electronic Press, 2013: 497-503.
    [11] WINKLER B, PLOECKINGER A, SCHEIDL R. A novel piloted fast switching multi poppet valve[J]. International Journal of Fluid Power, 2010, 11(3): 7-14. doi: 10.1080/14399776.2010.10781010
    [12] VAN DE VEN JAMES D. On fluid compressibility in switch-mode hydraulic circuits, part II: Experimental results[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(2): 021014. doi: 10.1115/1.4023063
    [13] WIENS T K. Analysis and mitigation of valve switching losses in switched inertance converters[C]//Proceedings of ASME/BATH 2015 Symposium on Fluid Power and Motion Control. New York: ASME, 2016
    [14] WIENS T. Improving performance of a switched inertance buck converter via positioning of reservoir flow valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(12): 124502. doi: 10.1115/1.4034045
    [15] BATDORFF M A, LUMKES J H. Virtually variable displacement hydraulic pump including compressability and switching losses[C]//Proceedings of ASME 2006 International Mechanical Engineering Congress and Exposition. New York: ASME, 2007: 57-66.
    [16] PAN M, JOHNSTON N, PLUMMER A, et al. Theoretical and experimental studies of a switched inertance hydraulic system including switching transition dynamics, non-linearity and leakage[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2014, 228(10): 802-815. doi: 10.1177/0959651814548299
    [17] 陈晓明, 朱玉川, 吴昌文, 等. 数字开关液压系统管路压力波传播建模与分析[J]. 北京航空航天大学学报, 2020, 46(7): 1335-1344. doi: 10.13700/j.bh.1001-5965.2019.0478

    CHEN X M, ZHU Y C, WU C W, et al. Modeling and analysis of pressure wave propagation inside pipeline of digital switched hydraulic system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1335-1344(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0478
    [18] DANTLGRABER J. Hydro-transformer: European patent application (PCT) international publication, No. 6499295[P]. 2002-12-31.
    [19] 顾临怡, 邱敏秀, 金波, 等. 由液压总线和开关液压源构成的新原理液压系统[J]. 机械工程学报, 2003, 39(1): 84-88. doi: 10.3321/j.issn:0577-6686.2003.01.018

    GU L Y, QIU M X, JIN B, et al. New hydraulic systems made up of hydraulic power bus and switch- mode hydraulic power supplies[J]. Chinese Journal of Mechanical Engineering, 2003, 39(1): 84-88(in Chinese). doi: 10.3321/j.issn:0577-6686.2003.01.018
    [20] WANG F, GU L Y, CHEN Y. A continuously variable hydraulic pressure converter based on high-speed on-off valves[J]. Mechatronics, 2011, 21(8): 1298-1308. doi: 10.1016/j.mechatronics.2011.09.002
    [21] CHEN X M, ZHU Y C, WIENS T, et al. Investigation of suction flow characteristic in the inertance hydraulic converters for efficiency improvement[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2022, 236(1): 3-25. doi: 10.1177/09596518211024878
    [22] CHEN X M, ZHU Y C, WIENS T, et al. Characteristic investigation of a flow-dependent inertia hydraulic converter driven by an equivalent fast switching valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2022, 236(7): 3354-3374. doi: 10.1177/09544062211038983
    [23] LAU K K, EDGE K A, JOHNSTON D N. Impedance characteristics of hydraulic orifices[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 1995, 209(4): 241-253. doi: 10.1243/PIME_PROC_1995_209_392_02
    [24] TAMBURRANO P, AMIRANTE R, DISTASO E, et al. Full simulation of a piezoelectric double nozzle flapper pilot valve coupled with a main stage spool valve[J]. Energy Procedia, 2018, 148: 487-494. doi: 10.1016/j.egypro.2018.08.124
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2021-11-11
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回
    常见问答