留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的气动伺服弹性失稳模式的机理分析

姜宇 杨超 吴志刚

姜宇, 杨超, 吴志刚等 . 一种新的气动伺服弹性失稳模式的机理分析[J]. 北京航空航天大学学报, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571
引用本文: 姜宇, 杨超, 吴志刚等 . 一种新的气动伺服弹性失稳模式的机理分析[J]. 北京航空航天大学学报, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571
JIANG Yu, YANG Chao, WU Zhiganget al. Mechanism analysis of a new aeroservoelastic instability mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571(in Chinese)
Citation: JIANG Yu, YANG Chao, WU Zhiganget al. Mechanism analysis of a new aeroservoelastic instability mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571(in Chinese)

一种新的气动伺服弹性失稳模式的机理分析

doi: 10.13700/j.bh.1001-5965.2021.0571
详细信息
    通讯作者:

    吴志刚, E-mail: wuzhigang@buaa.edu.cn

  • 中图分类号: V211.47

Mechanism analysis of a new aeroservoelastic instability mode

More Information
  • 摘要:

    某超声速导弹在飞行试验中发生了气动伺服弹性失稳导致的结构解体,通过对飞行试验数据的分析发现,气动伺服弹性失稳的振动频率高于弹体一阶弯曲模态频率,对导弹进行气动伺服弹性稳定性频域分析,并未发现该频率段发生气动伺服弹性失稳。针对该问题,建立了一种可以考虑数字式飞控系统采样过程影响的气动伺服弹性稳定性仿真分析方法,并对该导弹进行了建模分析,数值结果复现了该导弹的失稳现象。讨论了这一新型失稳现象发生的原因,包括连续结构滤波器离散化带来的移频现象和频率混叠问题。给出了对应的改进措施和相关的结论。

     

  • 图 1  弹性飞行器ASE系统框图

    Figure 1.  Block diagram of flexible flight vehicle aeroservoelasticity system

    图 2  飞控系统框图

    Figure 2.  Block diagram of flight control system

    图 3  有无滤波器导弹的开环传递函数曲线

    Figure 3.  Open-loop transfer function curves of missile with and without filter

    图 4  有数字式飞控系统的飞行器ASE系统开环Simulink模型

    Figure 4.  Simulink model of aircraft ASE open-loop system with digital flight control system

    图 5  有数字式飞控系统的飞行器ASE系统闭环Simulink模型

    Figure 5.  Simulink model of aircraft ASE close-loop system with digital flight control system

    图 6  无滤波器开环仿真结果(采样率400 Hz)

    Figure 6.  Open-loop simulation results without filter (sampling rate 400 Hz)

    图 7  无滤波器开环传递函数曲线(采样率400 Hz)

    Figure 7.  Open-loop transfer function curves without filter (sampling rate 400 Hz)

    图 8  有滤波器开环仿真结果(采样率400 Hz)

    Figure 8.  Open-loop simulation results with filter (sampling rate 400 Hz)

    图 9  有滤波器开环传递函数曲线(采样率400 Hz)

    Figure 9.  Open-loop transfer function curves with filter (sampling rate 400 Hz)

    图 10  有滤波器开环仿真结果(采样率200 Hz)

    Figure 10.  Open-loop simulation results with filter (sampling rate 200 Hz)

    图 11  有滤波器开环传递函数曲线(采样率200 Hz)

    Figure 11.  Open-loop transfer function curves with filter (sampling rate 200 Hz)

    图 12  系统闭环时域响应(采样率200 Hz)

    Figure 12.  Closed-loop time domain response of system (sampling rate 200 Hz)

    图 13  不同采样率离散化的结构滤波器频响曲线

    Figure 13.  Frequency response curves of discrete structured filters with different sampling rates

    图 14  系统辨识开环传递函数曲线(采样率200 Hz)

    Figure 14.  Open-loop transfer function curves for system identification(sampling rate 200 Hz)

  • [1] RAMSEY J K. NASA aeroelasticity handbook. Volume 2: Design guides. Part 2: NASA/TP-2006-212490[R]. Washington, D.C. : NASA Glenn Research Center, 2006.
    [2] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504002.htm

    YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504002.htm
    [3] 杨超, 吴志刚. 导弹气动伺服弹性稳定性分析[J]. 飞行力学, 2000, 18(4): 1-5. doi: 10.3969/j.issn.1002-0853.2000.04.001

    YANG C, WU Z G. Aeroservoelastic stability of missile[J]. Flight Dynamics, 2000, 18(4): 1-5(in Chinese). doi: 10.3969/j.issn.1002-0853.2000.04.001
    [4] KARPEL M. Procedures and models for aeroservoelastic analysis and design[J]. ZAMM Journal of Applied Mathematics and Mechanics, 2001, 81(9): 579-592. doi: 10.1002/1521-4001(200109)81:9<579::AID-ZAMM579>3.0.CO;2-Z
    [5] GUPTA K K, MEEK J L. Finite element multidisciplinary analysis[M]. 2nd ed. Reston: AIAA, 2003.
    [6] 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 148-167.

    YANG C, WU Z G, WAN Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing: Beihang University Press, 2011: 148-167(in Chinese).
    [7] 胡寿松. 自动控制原理[M]. 5版. 北京: 科学出版社, 2007: 206-212.

    HU S S. Automatic control principle[M]. 5th ed. Beijing: Science Press, 2007: 206-212(in Chinese).
    [8] KARPEL M, MOULIN B, IDAN M. Robust aeroservoelastic design with structural variations and modeling uncertainties[J]. Journal of Aircraft, 2003, 40(5): 946-954. doi: 10.2514/2.6871
    [9] DAI Y T, YANG C. Methods and advances in the study of aeroelasticity with uncertainties[J]. Chinese Journal of Aeronautics, 2014, 27(3): 461-474. doi: 10.1016/j.cja.2014.04.016
    [10] 蒋慰孙, 叶银忠. 多变量控制系统分析与设计[M]. 北京: 中国石化出版社, 1997: 129-133.

    JIANG W S, YE Y Z. Analysis and design of multivariable control system[M]. Beijing: China Petrochemical Press, 1997: 129-133(in Chinese).
    [11] PITT D, HAYES B, GOODMAN C. F/A-18E/F aeroservoelastic design, analysis, and test: AIAA 2003-1880[R]. Reston: AIAA, 2003.
    [12] 高金源, 等. 计算机控制系统——理论、设计与实现[M]. 北京: 北京航空航天大学出版社, 2001: 94-112.

    GAO J Y, et al. Computer control system-Theory, design and implementation[M]. Beijing: Beihang University Press, 2001: 94-112(in Chinese).
    [13] 肖建, 徐志根. 多采样率数字控制系统综述[J]. 信息与控制, 2003, 32(5): 436-441. doi: 10.3969/j.issn.1002-0411.2003.05.012

    XIAO J, XU Z G. Survey on the research of multirate digital control systems[J]. Information and Control, 2003, 32(5): 436-441(in Chinese). doi: 10.3969/j.issn.1002-0411.2003.05.012
    [14] 吴志刚, 杨超. 气动伺服弹性系统不确定性建模与鲁棒稳定性[J]. 航空学报, 2003, 24(4): 312-316. doi: 10.3321/j.issn:1000-6893.2003.04.006

    WU Z G, YANG C. Modeling and robust stability for aeroservoelastic systems with uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 312-316(in Chinese). doi: 10.3321/j.issn:1000-6893.2003.04.006
    [15] 宋晨, 杨超, 吴志刚. 3种气动弹性状态空间建模方法的对比[J]. 航空学报, 2007, 28(S1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2007S1015.htm

    SONG C, YANG C, WU Z G. Comparison of three aeroelastic state-space modeling methods[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 81-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2007S1015.htm
    [16] 楚龙飞, 吴志刚, 杨超, 等. 导弹自适应结构滤波器的设计与仿真[J]. 航空学报, 2011, 32(2): 195-201. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201102003.htm

    CHU L F, WU Z G, YANG C, et al. Design and simulation of adaptive structure filter for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 195-201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201102003.htm
    [17] 陈桂彬, 杨超, 邹丛青. 气动弹性设计基础[M]. 2版. 北京: 北京航空航天大学出版社, 2010: 179-189.

    CHEN G B, YANG C, ZOU C Q. Aeroelastic design basis[M]. 2nd ed. Beijing: Beihang University Press, 2010: 179-189(in Chinese).
    [18] YAMASHIRO H, STIRLING R. Reduction of flight control system/structural mode interaction: AIAA 2007-6381[R]. Reston: AIAA, 2007.
    [19] CUNNINGHAM D C, HIGGINS W T. A comparison of conventional and tracking filter systems for launch vehicle stabilization[J]. Journal of Spacecraft and Rockets, 1970, 7(8): 934-940. doi: 10.2514/3.30074
    [20] WIE B, BYUN K. A new concept of generalized structural filtering for active vibration control synthesis[C]//Guidance, Navigation and Control Conference. Reston: AIAA, 1987.
    [21] 郭宝龙, 闫允一, 朱娟娟. 工程信号与系统[M]. 北京: 高等教育出版社, 2014: 312-318.

    GUO B L, YAN Y Y, ZHU J J. Engineering signal and system[M]. Beijing: Higher Education Press, 2014: 312-318(in Chinese).
    [22] ZENG J, KUKREJA S L, MOULIN B. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1377-1390. doi: 10.2514/1.56790
    [23] 张仁嘉. 飞行器气动伺服弹性若干关键问题研究[D]. 北京: 北京航空航天大学, 2015: 101-102.

    ZHANG R J. Extensional research on several critical aeroservoelastic problems of air vehicles[D]. Beijing: Beihang University, 2015: 101-102(in Chinese).
    [24] 章家保, 刘慧, 贾宏光, 等. 电动舵机伺服系统的模型辨识及其校正[J]. 光学精密工程, 2008, 16(10): 1971-1976. doi: 10.3321/j.issn:1004-924X.2008.10.030

    ZHANG J B, LIU H, JIA H G, et al. Model identification and corrector design for servo system of electromechanical actuator[J]. Optics and Precision Engineering, 2008, 16(10): 1971-1976(in Chinese). doi: 10.3321/j.issn:1004-924X.2008.10.030
    [25] 李泽光. 信号与系统分析和应用[M]. 北京: 高等教育出版社, 2015: 145-154.

    LI Z G. Signal and system analysis and application[M]. Beijing: Higher Education Press, 2015: 145-154(in Chinese).
    [26] 应怀樵, 沈松, 刘进明. 频率混叠在时域和频域现象中的研究[J]. 振动、测试与诊断, 2006, 26(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200601000.htm

    YING H Q, SHEN S, LIU J M. Study on frequency aliasing in time and frequency domains[J]. Journal of Vibration, Measurement & Diagnosis, 2006, 26(1): 1-4(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200601000.htm
  • 加载中
图(14)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  113
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2021-12-19
  • 网络出版日期:  2022-01-05
  • 整期出版日期:  2022-07-20

目录

    /

    返回文章
    返回
    常见问答