留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于霍夫变换的空间非合作目标点云配准算法

石峰源 郑循江 姜丽辉 潘迪 刘轩

石峰源,郑循江,姜丽辉,等. 基于霍夫变换的空间非合作目标点云配准算法[J]. 北京航空航天大学学报,2023,49(8):2071-2078 doi: 10.13700/j.bh.1001-5965.2021.0575
引用本文: 石峰源,郑循江,姜丽辉,等. 基于霍夫变换的空间非合作目标点云配准算法[J]. 北京航空航天大学学报,2023,49(8):2071-2078 doi: 10.13700/j.bh.1001-5965.2021.0575
SHI F Y,ZHENG X J,JIANG L H,et al. Point cloud registration algorithm for non-cooperative targets based on Hough transform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2071-2078 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0575
Citation: SHI F Y,ZHENG X J,JIANG L H,et al. Point cloud registration algorithm for non-cooperative targets based on Hough transform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2071-2078 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0575

基于霍夫变换的空间非合作目标点云配准算法

doi: 10.13700/j.bh.1001-5965.2021.0575
基金项目: 国家重点研发计划(2019YFA0706002,2019YFA0706003)
详细信息
    通讯作者:

    E-mail:goodzxj@163.com

  • 中图分类号: V44

Point cloud registration algorithm for non-cooperative targets based on Hough transform

Funds: National Key R & D Program (2019YFA0706002,2019YFA0706003)
More Information
  • 摘要:

    针对空间非合作目标点云配准过程中目标残缺、机动过快等问题,对飞行时间深度(TOF)相机点云配准过程进行研究。利用相机可同时获取灰度与深度图的特点,提出一种基于霍夫变换的点云配准算法,在提供精确初始位姿的同时,也加速了最近点搜索过程。对TOF相机摄得灰度图进行边缘检测,利用边缘点以随机霍夫变换的方法拟合椭圆中心,使待配准点云与参考点云中心配准。随后检测图像几何特征,与对应参考点特征相配,提高初始位姿精度,既避免所提算法陷入局部最小,也可解决目标点云缺失无法配准的难题。在最近点搜索过程中,引入kd-tree改进算法,以$3\sigma $准则剔除单次k邻近的离群点,提高了相机动态性能。以某实拍卫星模型对所提算法进行仿真分析,成功验证了其对于残缺目标配准的可行性与鲁棒性。同时,在完整与残缺点云目标下,所提算法较于常规霍夫变换法相比分别提速955.3%和440.4%,且精度相当,具有较为广泛的应用前景。

     

  • 图 1  小孔成像模型

    Figure 1.  Projection of small hole model

    图 2  本文算法流程

    Figure 2.  The proposed algorithm flow

    图 3  卫星模型灰度图

    Figure 3.  Grayscale satellite model

    图 4  卫星模型深度图

    Figure 4.  Depth map of satellite model

    图 5  ICP算法仿真结果

    Figure 5.  Simulation results of ICP algorithm

    图 6  模型灰度图中心拟合结果

    Figure 6.  Fitting results of grayscale circle center of model

    图 7  点云相对初始位姿

    Figure 7.  Relative initial pose of point cloud

    图 8  去中心化点云初始位姿

    Figure 8.  Initial pose of decentralized point cloud

    图 9  点云配准结果

    Figure 9.  Point cloud registration results

    表  1  不同算法仿真对比结果

    Table  1.   Comparison simulation results of different algorithm

    算法配准时间/s配准误差/mm
    完整模型残缺模型完整模型残缺模型
    ICP[16]
    主成分分析[21]
    PCA迭代[22]19.432.190
    霍夫变换拟合30.9432.850.0710.060
    本文算法3.187.390.0730.061
    下载: 导出CSV
  • [1] 梁斌, 徐文福, 李成, 等. 地球静止轨道在轨服务技术研究现状与发展趋势[J]. 宇航学报, 2010, 31(1): 1-13. doi: 10.3873/j.issn.1000-1328.2010.01.001

    LIANG B, XU W F, LI C, et al. The status and prospect of orbital servicing in the geostationary orbit[J]. Journal of Astronautics, 2010, 31(1): 1-13(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.01.001
    [2] 贾佳璐, 应忍冬, 潘光华, 等. 基于TOF相机的三维重建技术[J]. 计算机应用与软件, 2020, 37(4): 127-131. doi: 10.3969/j.issn.1000-386x.2020.04.021

    JIA J L, YING R D, PAN G H, et al. 3D reconstruction based on TOF camera[J]. Computer Applications and Software, 2020, 37(4): 127-131(in Chinese). doi: 10.3969/j.issn.1000-386x.2020.04.021
    [3] 胡文俊, 马秀丽. 基于TOF相机和级联卷积网络的人头检测[J]. 电视技术, 2020, 44(7): 41-44. doi: 10.16280/j.videoe.2020.07.010

    HU W J, MA X L. Head detection based on TOF camera and cascade convolutional network[J]. Video Engineering, 2020, 44(7): 41-44(in Chinese). doi: 10.16280/j.videoe.2020.07.010
    [4] 徐国晟, 訚胜利, 陈浩. 一种基于tof相机的多场景人数统计方法: 中国, CN110674672A[P]. 2020-10-27.

    XU G S, YIN S L, CHEN H. Multi-scene people counting method based on tof camera: China, CN110674672A[P]. 2020-10-27 (in Chinese).
    [5] 魏立松. 基于双目立体视觉的障碍物检测研究[D]. 西安: 西安电子科技大学, 2020 .

    WEI L S. Research on obstacle detection based on binocular stereo vision[D]. Xi'an: Xidian University, 2020 (in Chinese).
    [6] 唐昆. 两栖球形机器人水下定位系统研究[D]. 北京: 北京理工大学, 2020.

    TANG K. Research on underwater positioning system of amphibious spherical robot [D]. Beijing: Beijing Institute of Technology, 2020(in Chinese).
    [7] OUMER N W, PANIN G. 3D point tracking and pose estimation of a space object using stereo images[C]//Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Piscataway: IEEE Press, 2013: 796-800.
    [8] 梁斌, 何英, 邹瑜, 等. TOF相机在空间非合作目标近距离测量中的应用[J]. 宇航学报, 2016, 37(9): 1080-1088.

    LIANG B, HE Y, ZOU Y, et al. Application of time-of-flight camera for relative measurement of non-cooperative target in close range[J]. Journal of Astronautics, 2016, 37(9): 1080-1088(in Chinese).
    [9] PONTIL M, VERRI A. Support vector machines for 3D object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(6): 637-646. doi: 10.1109/34.683777
    [10] BOGE T, WIMMER T, MA O, et al. EPOS-using robotics for RvD simulation of on-orbit servicing missions[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2010.
    [11] 王志超. 非合作航天器视觉位姿测量方法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013 .

    WANG Z C. Research on visual pose measurement method of non-cooperative spacecraft[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
    [12] 闫小盼, 敖磊, 杨新. 基于TOF相机的非合作矩形目标三维位姿测量方法[J]. 计算机应用研究, 2018, 35(9): 2856-2860. doi: 10.3969/j.issn.1001-3695.2018.09.070

    YAN X P, AO L, YANG X. Three-dimensional pose measurement method of non-cooperative rectangular target based on time-of-flight camera[J]. Application Research of Computers, 2018, 35(9): 2856-2860(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.09.070
    [13] 戴静兰, 陈志杨, 叶修梓. ICP算法在点云配准中的应用[J]. 中国图象图形学报, 2007, 12(3): 517-521. doi: 10.3969/j.issn.1006-8961.2007.03.023

    DAI J L, CHEN Z Y, YE X Z. The application of ICP algorithm in point cloud alignment[J]. Journal of Image and Graphics, 2007, 12(3): 517-521(in Chinese). doi: 10.3969/j.issn.1006-8961.2007.03.023
    [14] 刘剑, 白迪. 基于特征匹配的三维点云配准算法[J]. 光学学报, 2018, 38(12): 232-239.

    LIU J, BAI D. 3D point cloud registration algorithm based on feature matching[J]. Acta Optica Sinica, 2018, 38(12): 232-239(in Chinese).
    [15] 鄢莹. 基于鲁棒统计学方法的迭代最近点算法研究[D]. 武汉: 华中科技大学, 2014.

    YAN Y. Research on iterative nearest point algorithm based on robust statistical method[D]. Wuhan: Huazhong University of Science and Technology, 2014 (in Chinese).
    [16] BESL P J, MCKAY N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. doi: 10.1109/34.121791
    [17] 吕琼琼. 激光雷达点云数据的三维建模技术[D]. 北京: 北京交通大学, 2009 .

    LV Q Q. Three-dimensional modeling technology of lidar point cloud data[D]. Beijing: Beijing Jiaotong University, 2009 (in Chinese).
    [18] ILLINGWORTH J, KITTLER J. A survey of the Hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87-116. doi: 10.1016/S0734-189X(88)80033-1
    [19] XU L, OJA E, KULTANEN P. A new curve detection method: Randomized Hough transform (RHT)[J]. Pattern Recognition Letters, 1990, 11(5): 331-338. doi: 10.1016/0167-8655(90)90042-Z
    [20] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517. doi: 10.1145/361002.361007
    [21] 刘哲, 周天, 彭东东, 等. 一种改进的基于PCA的ICP点云配准算法研究[J]. 黑龙江大学自然科学学报, 2019, 36(4): 473-478. doi: 10.13482/j.issn1001-7011.2019.05.006

    LIU Z, ZHOU T, PENG D D, et al. An improved ICP point cloud registration algorithm based on PCA[J]. Journal of Natural Science of Heilongjiang University, 2019, 36(4): 473-478(in Chinese). doi: 10.13482/j.issn1001-7011.2019.05.006
    [22] 石峰源, 张春明, 姜丽辉, 等. 采用主成分分析的迭代最近点算法优化与验证[J]. 激光与光电子进展, 2022, 59(2): 9.

    SHI F Y, ZHANG C M, JIANG L H, et al. Optimization and verification of ICP algorithm using principal component analysis [J]. Laser and Optoelectronics Progress, 2022, 59(2): 9.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  55
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 录用日期:  2022-02-19
  • 网络出版日期:  2022-03-28
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答