留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SMABC算法的FPRM逻辑电路面积优化

秦东阁 何振学 陈晨 李隆昊 王涛 王翔

秦东阁,何振学,陈晨,等. 基于SMABC算法的FPRM逻辑电路面积优化[J]. 北京航空航天大学学报,2023,49(8):2099-2107 doi: 10.13700/j.bh.1001-5965.2021.0579
引用本文: 秦东阁,何振学,陈晨,等. 基于SMABC算法的FPRM逻辑电路面积优化[J]. 北京航空航天大学学报,2023,49(8):2099-2107 doi: 10.13700/j.bh.1001-5965.2021.0579
QIN D G,HE Z X,CHEN C,et al. Area optimization of FPRM logic circuits based on SMABC algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2099-2107 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0579
Citation: QIN D G,HE Z X,CHEN C,et al. Area optimization of FPRM logic circuits based on SMABC algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2099-2107 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0579

基于SMABC算法的FPRM逻辑电路面积优化

doi: 10.13700/j.bh.1001-5965.2021.0579
基金项目: 国家自然科学基金(62102130,62001034);河北省自然科学基金(F2020204003);河北省高等学校科学技术研究项目(BJ2019008);河北农业大学引进人才科研专项(YJ201829)
详细信息
    通讯作者:

    E-mail:hezhenxue@buaa.edu.cn

  • 中图分类号: V443;TP391.72

Area optimization of FPRM logic circuits based on SMABC algorithm

Funds: National Natural Science Foundation of China (62102130,62001034); Natural Science Foundation of Hebei Province (F2020204003); Hebei Youth Talents Support Project (BJ2019008); Introducing Talent Research Project of Hebei Agricultural University (YJ201829)
More Information
  • 摘要:

    固定极性Reed-Muller (FPRM)逻辑电路面积优化是当前集成电路设计领域的研究热点。但现有FPRM逻辑电路面积优化方法存在优化效率低和优化效果差等问题。FPRM逻辑电路面积优化属于组合优化问题,提出一种自适应混合人工蜂群(SMABC)算法。所提算法在引领蜂搜索阶段引入细菌觅食算法中的细菌趋化行为,使引领蜂向靠近优秀蜜源的方向搜索,提高了所提算法的收敛速度;对跟随蜂的选择概率进行改进使其依据种群的变化自适应改变,提高了所提算法的全局搜索能力;对侦查蜂的转换条件进行改进,增加了侦查蜂在进化过程中的扰动幅度;且在进化过程中引入精英保留策略以提高种群质量。此外,提出一种基于SMABC算法的FPRM逻辑电路面积优化方法,所提方法收敛速度最快且面积优化率最高为54.62%,平均面积优化率为15.33%。

     

  • 图 1  ABC算法流程

    Figure 1.  Flow of artificial bee colony algorithm

    图 2  SMABC算法流程

    Figure 2.  Flow of SMABC algorithm

    图 3  引领蜂的趋化觅食行为

    Figure 3.  Chemotactic search of leader bee

    图 4  本文方法流程

    Figure 4.  Flow of proposed method

    图 5  某5变量FPRM表达式的电路网络

    Figure 5.  Circuit network of a 5-variable FPRM expression

    图 6  4种算法的最小面积收敛曲线

    Figure 6.  Convergence curves of minimum area of four algorithms

    表  1  3种优化算法的参数设置

    Table  1.   Parameters of three optimization algorithms

    算法${L}_{{\rm{c}}}$${L}_{{\rm{s}}}$ $ {\alpha }_{1} $$ {\alpha }_{2} $Limit交叉率变异率加速因子$ {C}_{1} $加速因子 $ {C}_{2} $惯性权重
    SMABC3310.057
    GA0.70.03
    PSO220.3
    下载: 导出CSV

    表  2  4种算法的电路面积优化实验结果

    Table  2.   Experimental results of circuits area optimization based on four algorithms

    电路输入位数$A_{\mathrm{P}\mathrm{S}\mathrm{O} }$$A_{\mathrm{G}\mathrm{A} }$$A_{\mathrm{A}\mathrm{B}\mathrm{C} }$$A_{\mathrm{S}\mathrm{M}\mathrm{A}\mathrm{B}\mathrm{C} }$$A_{ {\mathrm{s}\mathrm{a}\mathrm{v}\mathrm{e}1} }$/%$A_{ {\mathrm{s}\mathrm{a}\mathrm{v}\mathrm{e}2} }$/%$A_{ {\mathrm{s}\mathrm{a}\mathrm{v}\mathrm{e}3} }$/%
    rd84856.2055.6055.0055.002.181.090
    ex1010102292.202295.002276.352260.951.381.510.68
    br112388.20277.40411.30266.0045.944.2954.62
    br212175.55185.50160.80134.0031.0138.4320.00
    misex3142381.602351.402402.351954.5521.8520.3022.91
    table3147248.306154.957190.506059.5519.621.5718.66
    gary15774.05681.00811.65649.0019.274.9325.06
    in015789.00682.00924.30649.0021.585.0842.42
    table517312.65257.40319.05266.0022.610.9425.12
    t21785.7082.1089.3080.007.122.6311.63
    in219766.30674.50816.25659.5016.192.2723.77
    ts1022372.80366.80359.80351.006.214.502.51
    下载: 导出CSV
  • [1] ZHAO B Y, BAI S Q, CONNOR S, et al. Physics-based circuit modeling methodology for system power integrity analysis and design[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(4): 1266-1277. doi: 10.1109/TEMC.2019.2927742
    [2] ŠTEVEK J, KVASNICA M, FIKAR M, et al. A parametric programming approach to automated integrated circuit design[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1180-1191. doi: 10.1109/TCST.2017.2716378
    [3] CARVALHO C, NEUMANN V G L. The next-to-minimal weights of binary projective reed-muller codes[J]. IEEE Transactions on Information Theory, 2016, 62(11): 6300-6303. doi: 10.1109/TIT.2016.2611527
    [4] HE Z X, XIAO L M, GU F, et al. An efficient and fast polarity optimization approach for mixed polarity Reed-Muller logic circuits[J]. Frontiers of Computer Science, 2017, 11(4): 728-742. doi: 10.1007/s11704-016-5259-2
    [5] DAS A, PRADHAN S N. Design time temperature reduction in mixed polarity dual Reed-Muller network: A NSGA-II based approach[J]. Advances in Electrical and Computer Engineering, 2020, 20(1): 99-104. doi: 10.4316/AECE.2020.01013
    [6] HE Z X, WU X Q, WANG C, et al. Delay optimization for ternary fixed polarity Reed-Muller circuits based on multilevel adaptive quantum genetic algorithm[J]. International Journal of Intelligent Systems, 2021, 36(10): 5981-6006. doi: 10.1002/int.22538
    [7] HE Z X, XIAO L M, HUO Z S, et al. Fast minimization of fixed polarity Reed-Muller expressions[J]. IEEE Access, 2019, 7: 24843-24851. doi: 10.1109/ACCESS.2019.2899035
    [8] FU Q, WANG P J, TONG N, et al. Multi-constrained polarity optimization of large-scale FPRM circuits based on multi-objective discrete particle swarm optimization[J]. Journal of Electronics & Information Technology, 2017, 39(3): 717-723.
    [9] WANG M B, WANG P J, FU Q, et al. Delay and area optimization for FPRM circuits based on MSPSO algorithm[C]// 2017 IEEE 12th International Conference on ASIC (ASICON). Piscataway: IEEE Press, 2018: 379-382.
    [10] CHEN Z W, ZHANG H H, WANG P J. Area optimization for FPRM circuit based on BDD[C]//2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Piscataway: IEEE Press, 2018: 1-3.
    [11] 王稼磊, 张会红, 汪鹏君, 等. 基于参数自适应布谷鸟算法的RM电路面积优化[J]. 计算机应用研究, 2018, 35(9): 2689-2691. doi: 10.3969/j.issn.1001-3695.2018.09.029

    WANG J L, ZHANG H H, WANG P J, et al. RM circuit area optimization based on cuckoo search with adaptive parameters[J]. Application Research of Computers, 2018, 35(9): 2689-2691(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.09.029
    [12] 汪鹏君, 汪迪生, 蒋志迪, 等. 基于 PSGA 算法的 ISFPRM 电路面积与功耗优化[J]. 电子学报, 2013, 41(8): 1542-1548. doi: 10.3969/j.issn.0372-2112.2013.08.014

    WANG P J, WANG D S, JIANG Z D, et al. Area and power optimization of ISFPRM circuits based on PSGA algorithm[J]. Acta Electronica Sinica, 2013, 41(8): 1542-1548(in Chinese). doi: 10.3969/j.issn.0372-2112.2013.08.014
    [13] KARABOGA D. An idea based on honey bee swarm for numerical optimization: TR06[R]. Kayseri: Erciyes University, 2005.
    [14] ZHANG J R, TANG H M, TANNANT D D, et al. Combined forecasting model with CEEMD-LCSS reconstruction and the ABC-SVR method for landslide displacement prediction[J]. Journal of Cleaner Production, 2021, 293: 126205. doi: 10.1016/j.jclepro.2021.126205
    [15] BINGUL Z, KARAHAN O. Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay[J]. Optimal Control Applications and Methods, 2018, 39(4): 1431-1450. doi: 10.1002/oca.2419
    [16] MOHAMAD E T, LI D Y, MURLIDHAR B R, et al. The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production[J]. Engineering with Computers, 2020, 36(4): 1355-1370. doi: 10.1007/s00366-019-00770-9
    [17] ASLAN S. A comparative study between artificial bee colony (ABC) algorithm and its variants on big data optimization[J]. Memetic Computing, 2020, 12(2): 129-150. doi: 10.1007/s12293-020-00298-2
    [18] BRINDHA D, NAGARAJAN N. An efficient automatic segmentation of spinal cord in MRI images using interactive random walker (RW) with artificial bee colony (ABC) algorithm[J]. Multimedia Tools and Applications, 2020, 79(5): 3623-3644.
    [19] BANHARNSAKUN A. Feature point matching based on ABC-NCC algorithm[J]. Evolving Systems, 2018, 9(1): 71-80. doi: 10.1007/s12530-017-9183-y
    [20] TOKTAS A, USTUN D. A triple-objective optimization scheme using butterfly-integrated ABC algorithm for design of multilayer RAM[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5602-5612. doi: 10.1109/TAP.2020.2981728
    [21] PANG B H, TENG Z J, SUN H Y, et al. A malicious node detection strategy based on fuzzy trust model and the ABC algorithm in wireless sensor network[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1613-1617. doi: 10.1109/LWC.2021.3070630
    [22] YAN Q Z, ZHOU Z R, WU M B, et al. A simplified analytical algorithm in ABC coordinate for the three-Level SVPWM[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3622-3627. doi: 10.1109/TPEL.2020.3027742
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  49
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-19
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答