留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向扑翼翼面运动参数的优化设计

吴越 谢长川 杨超 安朝

吴越, 谢长川, 杨超, 等 . 面向扑翼翼面运动参数的优化设计[J]. 北京航空航天大学学报, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593
引用本文: 吴越, 谢长川, 杨超, 等 . 面向扑翼翼面运动参数的优化设计[J]. 北京航空航天大学学报, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593
WU Yue, XIE Changchuan, YANG Chao, et al. Optimal design of motion parameters of flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593(in Chinese)
Citation: WU Yue, XIE Changchuan, YANG Chao, et al. Optimal design of motion parameters of flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593(in Chinese)

面向扑翼翼面运动参数的优化设计

doi: 10.13700/j.bh.1001-5965.2021.0593
详细信息
    通讯作者:

    谢长川, E-mail: xiechangc@buaa.edu.cn

  • 中图分类号: V222;TB553

Optimal design of motion parameters of flapping wing

More Information
  • 摘要:

    扑翼机的飞行依赖于扑翼翼面的运动,经过优化的运动策略能够使特定翼面发挥最佳的气动性能。然而目前扑翼机设计中缺乏有效的运动参数优化方法,无法针对给定机翼确定一组最优运动参数。采用非定常涡格法(UVLM)计算扑翼气动力,与现有的实验数据进行对比,验证了气动力计算方法的准确性。基于DIRECT(矩形分割)全局优化算法,以最大化推进效率为特定优化目标,对扑翼运动参数进行了迭代优化。结果表明,通过该优化算法能够得到最优扑翼运动参数,有效提高特定气动性能;应用优化算法计算得到的平均推力与基准运动的平均推力相比,在数值上有1.04倍的提高。在设计过程中,降低气动力约束有利于扑翼运动优化,使给定扑翼翼面具有更大的推进效率,无气动力约束的最大推进效率与基准运动的推进效率相比提高了46.8%。

     

  • 图 1  二维Shubert函数

    Figure 1.  Plot of two-dimensional Shubert function

    图 2  最小值计算结果随迭代次数的变化

    Figure 2.  Minimum value vs. number of iterations

    图 3  DIRECT全局优化算法在搜索域中的采样情况

    Figure 3.  Sampling of DIRECT global optimization algorithm in search domain

    图 4  扑翼机翼上下简谐振荡的运动示意图

    Figure 4.  Schematic diagram of vertical-harmonic-oscillating flapping wing motion

    图 5  扑翼运动非定常涡格法动态网格的三维视图

    Figure 5.  Three-dimensional view of UVLM dynamic mesh caused by flapping motion

    图 6  完整扑翼周期内的升力系数变化

    Figure 6.  Lift coefficient caused by flapping motion in a complete cycle

    图 7  扑翼机翼绕点扑动和俯仰的耦合运动

    Figure 7.  Schematic diagram of coupled flapping wing motion of flapping and pitching around a point

    图 8  仿生扑翼运动学的俯仰角度和扑动角度

    Figure 8.  Pitch angle and translation distance of bionic flapping motion

    图 9  三种运动参数下扑翼运动的升力系数和推力系数

    Figure 9.  Lift coefficient and thrust coefficient under flapping motion with three sets of parameters

    图 10  单个周期的气动力分布

    Figure 10.  Time slice of aerodynamic distribution in a period

    图 11  最大推进效率随优化迭代次数的变化

    Figure 11.  Maximum propulsion efficiency vs. number of optimization iteration

    表  1  DIRECT全局优化算法的最优运动学结果

    Table  1.   Optimal kinematics results of DIRECT global optimization algorithm

    项目 基准运动参数 有气动力约束 无气动力约束
    θ0/(°) 5.46 5.28 -0.17
    γm/(°) 27.86 35.73 25.32
    η 0.222 0.235 0.326
    D/N -0.095 -0.194 -0.111
    L/N 0.414 0.414 -0.006
    下载: 导出CSV
  • [1] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle: AIAA 2012-0588[R]. Reston: AIAA, 2012.
    [2] NICK T P S, TAI Y C, HO C M, et al Microbat: A palm-sized electrically powered ornithopter[C]//Proceedings of the NASA/JPL Workshop on Biomorphic Robotics, 2001: 14-17.
    [3] RAZAK N A, DIMITRIADIS G. Experimental study of wings undergoing active root flapping and pitching[J]. Journal of Fluids and Structures, 2014, 49: 687-704. doi: 10.1016/j.jfluidstructs.2014.06.009
    [4] SRIGRAROM S, CHAN W L. Flow field of flapping albatross-like wing and sound at low Reynolds number[J]. Journal of Unmanned System Technology, 2013, 1(2): 69-72.
    [5] STANFORD B K, BERAN P S. Analytical sensitivity analysis of an unsteady vortex-lattice method for flapping-wing optimization[J]. Journal of Aircraft, 2010, 47(2): 647-662. doi: 10.2514/1.46259
    [6] GHOMMEM M, COLLIER N, NIEMI A H, et al. On the shape optimization of flapping wings and their performance analysis[J]. Aerospace Science and Technology, 2014, 32(1): 274-292. doi: 10.1016/j.ast.2013.10.010
    [7] GHOMMEM M, HAJJ M R, MOOK D T, et al. Global optimization of actively morphing flapping wings[J]. Journal of Fluids and Structures, 2012, 33: 210-228. doi: 10.1016/j.jfluidstructs.2012.04.013
    [8] GABLONSKY J M. Modifications of the DIRECT algorithm[D]. Raleigh: North Carolina State University, 2001.
    [9] GHOMMEM M, COLLIER N, NIEMI A H, et al. Shape optimization and performance analysis of flapping wings[C]//Proceedings of the Eighth International Conference on Engineering Computational Technology, 2012.
    [10] ELDREDGE J D, JONES A R. Leading-edge vortices: Mechanics and modeling[J]. Annual Review of Fluid Mechanics, 2019, 51: 75-104. doi: 10.1146/annurev-fluid-010518-040334
    [11] SMITH M, WILKIN P, WILLIAMS M. The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings[J]. The Journal of Experimental Biology, 1996, 199(Pt 5): 1073-1083.
    [12] VEST M S, KATZ J. Unsteady aerodynamic model of flapping wings[J]. AIAA Journal, 1996, 34(7): 1435-1440. doi: 10.2514/3.13250
    [13] PERSSON P O, WILLIS D J, PERAIRE J. Numerical simulation of flapping wings using a panel method and a high-order Navier-Stokes solver[J]. International Journal for Numerical Methods in Engineering, 2012, 89(10): 1296-1316. doi: 10.1002/nme.3288
    [14] ROCCIA B A, PREIDIKMAN S, MASSA J C, et al. Modified unsteady vortex-lattice method to study flapping wings in hover flight[J]. AIAA Journal, 2013, 51(11): 2628-2642. doi: 10.2514/1.J052262
    [15] KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge: Cambridge University Press, 2001.
    [16] HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199. doi: 10.1016/j.jfluidstructs.2007.08.003
    [17] AONO H, CHIMAKURTHI S, CESNIK C, et al. Computational modeling of spanwise flexibility effects on flapping wing aerodynamics: AIAA 2009-1270[R]. Reston: AIAA, 2009.
    [18] WOLF T, KONRATH R. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight[J]. Experiments in Fluids, 2015, 56(2): 1-18.
    [19] LANG X Y, SONG B F, YANG W Q, et al. Aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics[J]. Chinese Journal of Aeronautics, 2021, 34(5): 239-252.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  111
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 录用日期:  2021-11-14
  • 网络出版日期:  2021-11-22
  • 整期出版日期:  2022-07-20

目录

    /

    返回文章
    返回
    常见问答