留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低电阻率陶瓷基PTC材料温控特性研究

桑泽康 赵锐 程文龙

桑泽康,赵锐,程文龙. 低电阻率陶瓷基PTC材料温控特性研究[J]. 北京航空航天大学学报,2023,49(8):2147-2153 doi: 10.13700/j.bh.1001-5965.2021.0602
引用本文: 桑泽康,赵锐,程文龙. 低电阻率陶瓷基PTC材料温控特性研究[J]. 北京航空航天大学学报,2023,49(8):2147-2153 doi: 10.13700/j.bh.1001-5965.2021.0602
SANG Z K,ZHAO R,CHENG W L. Study on temperature control characteristics of low-resistivity ceramic-based PTC material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2147-2153 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0602
Citation: SANG Z K,ZHAO R,CHENG W L. Study on temperature control characteristics of low-resistivity ceramic-based PTC material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2147-2153 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0602

低电阻率陶瓷基PTC材料温控特性研究

doi: 10.13700/j.bh.1001-5965.2021.0602
基金项目: 国家自然科学基金(51876198)
详细信息
    作者简介:

    桑泽康 男,硕士研究生。主要研究方向:常温居里点陶瓷基PTC材料制备及应用。赵 锐 男,博士,副研究员。主要研究方向:主要研究方向:高热流密度散热技术、小型散热系统、航天器控制技术等

    程文龙 男,博士,教授,博士生导师。主要研究方向:高热流密度传热及热控技术、储能材料及储能系统、油井传热及地热系统

    通讯作者:

    E-mail:wlcheng515@163.com

  • 中图分类号: TB34

Study on temperature control characteristics of low-resistivity ceramic-based PTC material

Funds: National Natural Science Foundation of China (51876198)
More Information
  • 摘要:

    常温居里点陶瓷基正温度系数材料在常温段热控领域具有广阔应用前景,但其存在低温区电阻率过大的问题。基于此,以Ba0.64Sr0.36TiO3为基体并采用固相烧结工艺,研制出低温区电阻率为800 Ω·cm的常温居里点PTC材料,分别利用实验和仿真手段对其温控性能进行研究。结果表明:在低温、低电压工况下,该材料可将受控体温度迅速维持在25.6 ℃附近,而其他加热元件控制温度均偏离常温。该材料热控响应时间少于其他加热元件的50%。在−5~5 ℃的周期性变化环境中,该材料控温波动幅度最小,只有2.1 ℃。在真实低温环境下,该材料能将受控体温度快速升至约22.3 ℃,在12 h内温度波动不到2 ℃,有效抑制了外界环境对热控过程的干扰。

     

  • 图 1  烧结流程

    Figure 1.  Sintering flow chart

    图 2  电阻-温度特性测试结果与拟合结果对比

    Figure 2.  Comparison of resistance-temperature characteristic test results and fitting results

    图 3  PTC加热器控温原理

    Figure 3.  Schematic diagram of temperature control

    图 4  实验系统

    Figure 4.  Experimental system

    图 5  −10 ℃、20 V电压下Rcon和R4温控表现对比

    Figure 5.  Comparison of temperature control performance of Rcon and R4 at 20 V and −10 ℃

    图 6  不同工况下的实验值与计算值对比

    Figure 6.  Comparison of experimental and calculated values under different working conditions

    图 7  −10 ℃、20 V电压下R1和R2温控曲线

    Figure 7.  Temperature control curves of R1 and R2 at 20 V and −10 ℃

    图 8  −20 ℃、12 V电压下不同低温电阻、居里点材料温控曲线

    Figure 8.  Temperature control curves of different low-temperature resistor and Curie point materials at −20 ℃ and 12 V voltage

    图 9  温控目标相同时不同材料的温控曲线

    Figure 9.  Temperature control curves of different materials when temperature control target is the same

    图 10  实际低温天气条件下不同材料温控对比

    Figure 10.  Comparison of temperature control of different materials under actual low-temperature weather conditions

    表  1  本文工作与其他相关文献工作比较

    Table  1.   Comparison of work in this paper with other related literature work

    编号样品TC/℃ρLT/(Ω·cm)αT /(%·℃−1方法
    R1BCSTN328.1×104 2.6文献[19]
    R2Ba0.65Sr0.35TiO3182.0×10410.7文献[20]
    R3Ba0.7Sr0.3TiO3302.5×105文献[21]
    R4Ba0.64Sr0.36TiO32080010.5本文
    下载: 导出CSV
  • [1] 刘荻帆, 钟少龙, 党智敏. 正温度系数聚合物复合材料的制备及限流特性的仿真研究[J]. 绝缘材料, 2021, 54(3): 24-28.

    LIU D F, ZHONG S L, DANG Z M. Preparation of polymer composites with positive temperature coefficient and simulation study on its current limiting characteristics[J]. Insulating Materials, 2021, 54(3): 24-28(in Chinese).
    [2] 张安迪, 张艳荣, 李涛. 论域可变的模糊PID控制在半导体激光器温度控制系统中的应用[J]. 光学学报, 2021, 41(12): 153-161.

    ZHANG A D, ZHANG Y R, LI T. Application of variable domain fuzzy PID control in semiconductor laser temperature control system[J]. Acta Optica Sinica, 2021, 41(12): 153-161(in Chinese).
    [3] 李运泽, 魏传锋, 袁领双, 等. 应用PTC电加热器的卫星局部温度控制系统仿真[J]. 系统仿真学报, 2005, 17(6): 1494-1496. doi: 10.3969/j.issn.1004-731X.2005.06.059

    LI Y Z, WEI C F, YUAN L S, et al. Simulation study of satellite partial temperature control system using PTC heater[J]. Acta Simulata Systematica Sinica, 2005, 17(6): 1494-1496(in Chinese). doi: 10.3969/j.issn.1004-731X.2005.06.059
    [4] 何浩, 潘俊安, 雷维新, 等. 聚合物基PTC导电材料的制备及其在锂离子电池中的应用[J]. 储能科学与技术, 2019, 8(4): 718-724. doi: 10.12028/j.issn.2095-4239.2019.0009

    HE H, PAN J A, LEI W X, et al. Preparation of conductive fire retardant and its application in Li-ion battery[J]. Energy Storage Science and Technology, 2019, 8(4): 718-724(in Chinese). doi: 10.12028/j.issn.2095-4239.2019.0009
    [5] SONG J L, CHENG W L, XU Z M, et al. Study on PID temperature control performance of a novel PTC material with room temperature Curie point[J]. International Journal of Heat and Mass Transfer, 2016, 95: 1038-1046. doi: 10.1016/j.ijheatmasstransfer.2015.12.057
    [6] CHENG W L, SONG J L, LIU Y, et al. Theoretical and experimental studies on thermal control by using a novel PTC material with room temperature Curie point[J]. International Journal of Heat and Mass Transfer, 2014, 74: 441-447.
    [7] WANG R J, PAN Y H, NIAN Y L, et al. Study on dynamic thermal control performance of positive temperature coefficient (PTC) material based on a novel heat transfer model considering internal heat transfer[J]. Applied Thermal Engineering, 2020, 165: 114452. doi: 10.1016/j.applthermaleng.2019.114452
    [8] 华尔天, 张人杰, 方吉庆. 空调PTC加热器热分析与工艺参数优化[J]. 浙江工业大学学报, 2019, 47(4): 361-367. doi: 10.3969/j.issn.1006-4303.2019.04.002

    HUA E T, ZHANG R J, FANG J Q. Thermal analysis of PTC heater and optimization of process parameters in air-conditioning[J]. Journal of Zhejiang University of Technology, 2019, 47(4): 361-367(in Chinese). doi: 10.3969/j.issn.1006-4303.2019.04.002
    [9] 朱波, 杜如海, 姚明尧, 等. 基于相变材料的纯电动汽车电池热管理研究[J]. 电源技术, 2020, 44(11): 1666-1670. doi: 10.3969/j.issn.1002-087X.2020.11.027

    ZHU B, DU R H, YAO M Y, et al. Research on thermal management of pure electric vehicle battery based on phase change material[J]. Chinese Journal of Power Sources, 2020, 44(11): 1666-1670(in Chinese). doi: 10.3969/j.issn.1002-087X.2020.11.027
    [10] 曹勇. 电动汽车动力电源系统低温加热策略研究[J]. 电源技术, 2017, 41(5): 765-769. doi: 10.3969/j.issn.1002-087X.2017.05.032

    CAO Y. Low temperature heating strategy research of electric vehicle power supply system[J]. Chinese Journal of Power Sources, 2017, 41(5): 765-769(in Chinese). doi: 10.3969/j.issn.1002-087X.2017.05.032
    [11] 郭坚, 陈燕, 邵兴国. 航天器热控自主管理中的智能控制技术[J]. 航天器工程, 2012, 21(6): 49-53.

    GUO J, CHEN Y, SHAO X G. Intelligent control technology for spacecraft thermal autonomous management[J]. Spacecraft Engineering, 2012, 21(6): 49-53(in Chinese).
    [12] 杨昌鹏, 赵欣, 辛强. 倾斜轨道星敏感器热控设计及在轨分析[J]. 航天器工程, 2013, 22(6): 59-64.

    YANG C P, ZHAO X, XIN Q. Thermal design and on-orbit thermal analysis on star sensor of inclined-orbit satellite[J]. Spacecraft Engineering, 2013, 22(6): 59-64(in Chinese).
    [13] 刘海波, 谭吉春, 郝云彩, 等. 环境温度对星敏感器测量精度的影响[J]. 光电工程, 2008, 35(12): 40-44.

    LIU H B, TAN J C, HAO Y C, et al. Effect of ambient temperature on star sensor measurement accuracy[J]. Opto-Electronic Engineering, 2008, 35(12): 40-44(in Chinese).
    [14] 刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341. doi: 10.11728/cjss2021.02.337

    LIU H, ZHANG X F, FENG J C, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341(in Chinese). doi: 10.11728/cjss2021.02.337
    [15] CHENG W L, WU W F, SONG J L, et al. A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect[J]. Energy Conversion and Management, 2014, 79: 470-476. doi: 10.1016/j.enconman.2013.12.053
    [16] CHENG W L, YUAN S, SONG J L. Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures[J]. Energy, 2014, 74: 447-454. doi: 10.1016/j.energy.2014.07.009
    [17] 常畅. 低居里温度点正温度系数层状电热材料的制备与应用研究[D]. 广州: 华南理工大学, 2020.

    CHANG C. Preparation and application of positive temperature coefficient laminated electric heating materials with low Curie temperature[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
    [18] CHEN T T, FU M S, JIA B W, et al. Dielectric and ferroelectric properties of Ba1−xSrxTiO3 ceramics: Effects of grain size and ferroelectric domain[J]. Advances in Applied Ceramics, 2013, 112(5): 270-276. doi: 10.1179/1743676112Y.0000000070
    [19] YU A M, LI Q, FAN D S, et al. Study on positive temperature coefficient of resistivity of co-doped BaTiO3 with Curie temperature in room temperature region[J]. Science China Technological Sciences, 2019, 62(5): 811-819. doi: 10.1007/s11431-018-9435-7
    [20] YU A M, LI Q. Temperature-dependent resistivity performance of Mn/Y-doped Ba1−xSrxTiO3 compositions with potential thermal control applications[J]. Ceramics International, 2020, 46(7): 8796-8805. doi: 10.1016/j.ceramint.2019.12.119
    [21] 宋嘉梁. 常温PTC热控材料及其热控方法研究[D]. 合肥: 中国科学技术大学, 2016.

    SONG J L. Study on PTC thermal control material at room temperature and its thermal control method[D]. Hefei: University of Science and Technology of China, 2016(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  78
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2021-12-24
  • 网络出版日期:  2022-01-18
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答