留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未知区域中四旋翼无人机集群协同搜索与围捕算法

过劲劲 齐俊桐 王明明 吴冲 徐士博

过劲劲,齐俊桐,王明明,等. 未知区域中四旋翼无人机集群协同搜索与围捕算法[J]. 北京航空航天大学学报,2023,49(8):2001-2010 doi: 10.13700/j.bh.1001-5965.2021.0606
引用本文: 过劲劲,齐俊桐,王明明,等. 未知区域中四旋翼无人机集群协同搜索与围捕算法[J]. 北京航空航天大学学报,2023,49(8):2001-2010 doi: 10.13700/j.bh.1001-5965.2021.0606
GUO J J,QI J T,WANG M M,et al. A cooperative search and encirclement algorithm for quadrotors in unknown areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2001-2010 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0606
Citation: GUO J J,QI J T,WANG M M,et al. A cooperative search and encirclement algorithm for quadrotors in unknown areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2001-2010 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0606

未知区域中四旋翼无人机集群协同搜索与围捕算法

doi: 10.13700/j.bh.1001-5965.2021.0606
基金项目: 国家自然科学基金(61873182);航空电子系统综合技术重点实验室和航空科学基金联合资助(202055048002)
详细信息
    通讯作者:

    E-mail:qijt@tju.edu.cn

  • 中图分类号: V279+.3;V249.122

A cooperative search and encirclement algorithm for quadrotors in unknown areas

Funds: National Natural Science Foundation of China (61873182);Science and Technology on Avionics Integration Laboratory & Aeronautical Science Foundation of China (202055048002)
More Information
  • 摘要:

    四旋翼无人机集群可以被用来进行区域侦察,以建立对环境与兴趣目标的认知。为四旋翼无人机集群提出一种分布式协同搜索算法和动态目标包围技术,以解决在未探测区域定位和监测目标中所遇到的挑战。为降低所提算法的复杂度,通过栅格划分方法将任务区域划分为2级栅格子区域。考虑到动态目标的随机性,设计一种数字信息素来引导多无人机对任务区域进行2次搜索,并以快速搜索到目标为奖励函数,通过滚动优化决策得到最优解作为无人机的输入。然后,基于一致性协议设计一种多无人机协同跟踪与围捕协议,以获取动态目标的实时信息。数个仿真结果与室外飞行实验验证了所提算法能够使四旋翼无人机对未知区域中动态目标进行有效搜索与动态监视。

     

  • 图 1  四旋翼无人机集群协同搜索示意图

    Figure 1.  Illustration of quadrotors cooperative search

    图 2  四旋翼无人机集群平台的硬件结构

    Figure 2.  Hardware structure of quadrotors platform

    图 3  多四旋翼无人机间的数据流

    Figure 3.  Data stream of multiple UAVs

    图 4  gazebo中3个侦查无人机对S型运动目标的搜索与围捕

    Figure 4.  Cooperative search of S-type moving target by three quadrotors in gazebo simulation

    图 5  实验1中gazebo中无人机的位置轨迹

    Figure 5.  Trajectories of quadrotors in gazebo simulation in expetiment 1

    图 6  实验1中多四旋翼无人机目标搜索和围捕的图像

    Figure 6.  Target search and enclosure image of quadroctors in experiment 1

    图 7  实验1中侦察机与动态目标的位置轨迹

    Figure 7.  Trajectories of quadrotors and target in experiment 1

    图 8  实验1中无人机与目标的距离及无人机之间距离

    Figure 8.  Distance between UAVs and target and distance between UAVs in experiment 1

    图 9  gazebo中侦察机对圆型运动目标的搜索

    Figure 9.  Cooperative search of circular moving target by reconnaissance quadrotors in gazebo simulation

    图 10  实验2中gazebo中无人机的位置轨迹

    Figure 10.  Trajectories of quadrotors in gazebo simulation in experiment

    图 11  实验2中多四旋翼无人机中目标搜索和围捕的图像

    Figure 11.  Target search and enclosure image of quadroctors in experiment 2

    图 12  实验2中侦察机与动态目标的位置轨迹

    Figure 12.  Trajectories of quadrotors and target in experiment 2

    图 13  实验2中无人机与目标的距离及无人机之间距离

    Figure 13.  Distance between UAVs and target and distance between UAVs in experiment 2

    图 14  仿真中的4架无人机的位置轨迹

    Figure 14.  Trajectories of 4 quadrotors in the simulation

    图 15  4架无人机遍历搜索的结果

    Figure 15.  Traverse search results of 4 quadrotor

    图 16  发现的目标数量

    Figure 16.  Number of targets found

  • [1] HAN J L, CHEN Y Q. Multiple UAV formations for cooperative source seeking and contour mapping of a radiative signal field[J]. Journal of Intelligent and Robotic Systems, 2014, 74(1-2): 323-332. doi: 10.1007/s10846-013-9897-4
    [2] PETRLÍK M, BÁČA T, HEŘT D, et al. A robust UAV system for operations in a constrained environment[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2169-2176. doi: 10.1109/LRA.2020.2970980
    [3] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京航空航天大学学报, 2021, 47(4): 814-827. doi: 10.13700/j.bh.1001-5965.2020.0026

    WU A, YANG R N, LIANG X L, et al. Cooperative search algorithm based on pheromone decision for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 814-827(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0026
    [4] SHIN G, YOOUN H, SHIN D, et al. Incremental learning method for cyber intelligence, surveillance, and reconnaissance in closed military network using converged IT techniques[J]. Soft Computing, 2018, 22(20): 6835-6844. doi: 10.1007/s00500-018-3433-1
    [5] ZOHDI T I. Multiple UAVs for mapping: A review of basic modeling, simulation, and applications[J]. Annual Review of Environment and Resources, 2018, 43: 523-543. doi: 10.1146/annurev-environ-102017-025912
    [6] 曹翔, 孙长银. 栅格地图中多机器人协作搜索目标[J]. 控制理论与应用, 2018, 35(3): 273-282. doi: 10.7641/CTA.2017.70242

    CAO X, SUN C Y. Cooperative target search of multi-robot in grid map[J]. Control Theory & Applications, 2018, 35(3): 273-282(in Chinese). doi: 10.7641/CTA.2017.70242
    [7] ALFEO A, CIMINO M, VAGLINI G. Enhancing biologically inspired swarm behavior: Metaheuristics to foster the optimization of UAVs coordination in target search[J]. Computers & Operations Research, 2019, 110: 34-47.
    [8] GUASTELLA D C, CANTELLI L, GIAMMELLO G, et al. Complete coverage path planning for aerial vehicle flocks deployed in outdoor environments[J]. Computers & Electrical Engineering, 2019, 75: 189-201.
    [9] TORRES M, PELTA D A, VERDEGAY J L, et al. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction[J]. Expert Systems with Applications, 2016, 55: 441-451. doi: 10.1016/j.eswa.2016.02.007
    [10] KHAN A, YANMAZ E, RINNER B. Information exchange and decision making in micro aerial vehicle networks for cooperative search[J]. IEEE Transactions on Control of Network Systems, 2015, 2(4): 335-347. doi: 10.1109/TCNS.2015.2426771
    [11] AGGARWAL S, KUMAR N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges[J]. Computer Communications, 2020, 149: 270-299. doi: 10.1016/j.comcom.2019.10.014
    [12] SUN X X, CAI C, PAN S, et al. A cooperative target search method based on intelligent water drops algorithm[J]. Computers & Electrical Engineering, 2019, 80: 106494.
    [13] ZHEN Z Y, XING D J, GAO C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76: 402-411. doi: 10.1016/j.ast.2018.01.035
    [14] ZHEN Z Y, ZHU P, XUE Y X, et al. Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2706-2716. doi: 10.1016/j.cja.2019.05.012
    [15] LI L, ZHANG X, YUE W, et al. Cooperative search for dynamic targets by multiple UAVs with communication data losses[J]. ISA Transactions, 2021, 114: 230-241. doi: 10.1016/j.isatra.2020.12.055
    [16] OH H, RAMEZAN SHIRAZI A, SUN C L, et al. Bio-inspired self-organising multi-robot pattern formation: A review[J]. Robotics and Autonomous Systems, 2017, 91: 83-100. doi: 10.1016/j.robot.2016.12.006
    [17] PETRÁČEK P, WALTER V, BÁČA T, et al. Bio-inspired compact swarms of unmanned aerial vehicles without communication and external localization[J]. Bioinspiration & Biomimetics, 2021, 16(2): 026009.
    [18] LUO D L, SHAO J A, XU Y, et al. Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search[J]. Applied Sciences, 2019, 9(5): 827. doi: 10.3390/app9050827
    [19] KURDI H, AL MEGREN S, YOUCEF TOUMI K, et al. Bee-inspired task allocation algorithm for multi-UAV search and rescue missions[J]. International Journal of Bio-Inspired Computation, 2020, 16(4): 252-263. doi: 10.1504/IJBIC.2020.112339
    [20] VAN PARUNAK H, PURCELL M, O'CONNELL R. Digital pheromones for autonomous coordination of swarming UAV's[C]//Proceedings of the 1st UAV Conference. Reston: AIAA, 2002: 1-9.
    [21] DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024. doi: 10.1109/TIE.2016.2593656
    [22] XIA Y Q, NA X T, SUN Z Q, et al. Formation control and collision avoidance for multi-agent systems based on position estimation[J]. ISA Transactions, 2016, 61: 287-296. doi: 10.1016/j.isatra.2015.12.010
    [23] TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2567-2577. doi: 10.1109/TIE.2017.2739700
    [24] DU H B, ZHU W W, WEN G H, et al. Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 342-353. doi: 10.1109/TCYB.2017.2777463
  • 加载中
图(16)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  125
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2022-01-03
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答