留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机结冰中水滴撞击特性的欧拉法准确性分析

申晓斌 赵文朝 林贵平 亓子程

申晓斌,赵文朝,林贵平,等. 飞机结冰中水滴撞击特性的欧拉法准确性分析[J]. 北京航空航天大学学报,2023,49(8):1912-1921 doi: 10.13700/j.bh.1001-5965.2021.0607
引用本文: 申晓斌,赵文朝,林贵平,等. 飞机结冰中水滴撞击特性的欧拉法准确性分析[J]. 北京航空航天大学学报,2023,49(8):1912-1921 doi: 10.13700/j.bh.1001-5965.2021.0607
SHEN X B,ZHAO W Z,LIN G P,et al. Accuracy analysis of Eulerian method for droplet impingement characteristics under aircraft icing conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1912-1921 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0607
Citation: SHEN X B,ZHAO W Z,LIN G P,et al. Accuracy analysis of Eulerian method for droplet impingement characteristics under aircraft icing conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1912-1921 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0607

飞机结冰中水滴撞击特性的欧拉法准确性分析

doi: 10.13700/j.bh.1001-5965.2021.0607
基金项目: 国家自然科学基金(51806008);结冰与防除冰重点实验室开放课题(IADL20200307)
详细信息
    通讯作者:

    E-mail:shenxiaobin@buaa.edu.cn

  • 中图分类号: V244.1+5

Accuracy analysis of Eulerian method for droplet impingement characteristics under aircraft icing conditions

Funds: National Natural Science Foundation of China (51806008); Open Fund of Key Laboratory of Icing and Anti/De-icing (IADL20200307)
More Information
  • 摘要:

    过冷水滴撞击特性计算是飞机结冰冰形预测与防除冰系统性能分析的基础,常用方法为欧拉法与拉格朗日法,2种方法的结果通常是一致的,但在某些部件上会出现差异。通过对欧拉法与拉格朗日法进行比较,分析2种方法结果的异同,进而讨论欧拉法对于飞机结冰中水滴撞击特性计算的准确性。以NACA 0012翼型、冰风洞风道、S形进气道与发动机气膜帽罩为对象,采用欧拉法与拉格朗日法计算获得水滴运动及局部水收集系数。结果表明:当水滴运动未受到上游效应影响时,欧拉法与拉格朗日法的结果一致;当水滴发生偏转后,欧拉法速度的单一性使水滴流线不能相交,而拉格朗日法能捕捉水滴轨迹的交叉,导致2种方法的预测产生差异,且欧拉法结果与水滴不碰撞及聚并的假设存在冲突;水滴在上游部件空气绕流或气流吹袭作用下都会发生偏转,使得欧拉法与拉格朗日法得到的下游表面水收集系数不相符,欧拉法对于S形进气道与发动机气膜帽罩的水滴运动及撞击特性计算存在误差。研究成果对飞机结冰冰形的准确预测及防除冰系统的设计有重要参考价值。

     

  • 图 1  FENSAP-ICE欧拉法获得的NACA 0012翼型液态水含量分布

    Figure 1.  Contour of liquid water content obtained by FENSAP-ICE Eulerian method for NACA 0012 airfoil

    图 2  NACA 0012翼型水收集系数与文献[10]结果的比较

    Figure 2.  Comparison of collection efficiencies with literature results from Ref.[10] for a NACA 0012 airfoil

    图 3  FENSAP-ICE欧拉法获得的冰风洞风道液态水含量分布与水滴的流线

    Figure 3.  Droplet streamlines obtained by FENSAP-ICE Eulerian method with distribution of liquid water content for an ice wind tunnel

    图 4  拉格朗日法获得的冰风洞风道水滴运动轨迹

    Figure 4.  Droplet trajectories obtained by Lagrangian method for an ice wind tunnel

    图 5  FENSAP-ICE欧拉法获得的S形进气道液态水含量分布

    Figure 5.  Contour of liquid water content obtained by FENSAP-ICE Eulerian method for an S-shape duct

    图 6  拉格朗日法获得的S形进气道水滴运动轨迹

    Figure 6.  Droplet trajectories obtained by Lagrangian method for an S-shape duct

    图 7  FENSAP-ICE欧拉法与拉格朗日法计算的S形进气道内帽罩表面水收集系数比较

    Figure 7.  Comparison of collection efficiencies obtained by FENSAP-ICE Eulerian and Lagrangian methods for an S-shape duct

    图 8  有出流气膜的发动机帽罩空气速度场分布

    Figure 8.  Contour of air velocity for an engine cone with outflow air film

    图 9  FENSAP-ICE欧拉法获得的有出流气膜的发动机帽罩液态水含量分布

    Figure 9.  Contour of liquid water content obtained by FENSAP-ICE Eulerian method for an engine cone with outflow air film

    图 10  拉格朗日法获得的有出流气膜的发动机帽罩水滴运动轨迹

    Figure 10.  Droplet trajectories obtained by Lagrangian method for an engine cone with outflow air film

    图 11  FENSAP-ICE欧拉法与拉格朗日法计算的有出流气膜的发动机帽罩表面水收集系数比较

    Figure 11.  Comparison of collection efficiencies obtained by FENSAP-ICE Eulerian and Lagrangian methods for an engine cone with outflow air film

    图 12  无出流气膜的发动机帽罩空气速度场分布

    Figure 12.  Contour of air velocity for an engine cone without outflow air film

    图 13  FENSAP-ICE欧拉法获得的无出流气膜的发动机帽罩液态水含量分布

    Figure 13.  Contour of liquid water content obtained by FENSAP-ICE Eulerian method for an engine cone without outflow air film

    图 14  拉格朗日法获得的无出流气膜的发动机帽罩水滴运动轨迹

    Figure 14.  Droplet trajectories obtained by Lagrangian method for an engine cone without outflow air film

    图 15  FENSAP-ICE欧拉法与拉格朗日法计算的无出流气膜的发动机帽罩表面水收集系数比较

    Figure 15.  Comparison of collection efficiencies obtained by FENSAP-ICE Eulerian and Lagrangian methods for an engine cone without outflow air film

  • [1] CAO Y, TAN W, WU Z. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. doi: 10.1016/j.ast.2017.12.028
    [2] 雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报, 2018, 39(9): 121952. doi: 10.7527/S1000-6893.2018.21952

    LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinca, 2018, 39(9): 121952(in Chinese). doi: 10.7527/S1000-6893.2018.21952
    [3] YU J, PENG L, BU X Q, et al. Experimental investigation and correlation development of jet impingement heat transfer with two rows of aligned jet holes on an internal surface of a wing leading edge[J]. Chinese Journal of Aeronautics, 2018, 31(10): 37-47.
    [4] WANG C, CHANG S, WU H. Lagrangian approach for simulating supercooled large droplets’ impingement effect[J]. Journal of Aircraft, 2015, 52(2): 1-14.
    [5] WRIGHT W B. User manual for the NASA Glenn ice accretion code LEWICE: Version 2.2. 2: NASA-CR-2002-211793[R]. Washington, D. C. : NASA, 2002.
    [6] PAPADAKIS M, HUNG K E, VU G T, et al. Experimental investigation of water droplet impingement on airfoils, finite wings, and an S-duct engine inlet: NASA/TM-2002-211700[R]. Washington, D. C. : NASA, 2002.
    [7] PAPADAKIS M, RACHMAN A, WONG S C, et al. Water droplet impingement on simulated glaze, mixed, and rime ice accretions: NASA/TM-2007-213961[R]. Washington, D. C. : NASA, 2007.
    [8] PAPADAKIS M, WONG S C, RACHMAN A, et al. Large and small droplet impingement data on airfoils and two simulated ice shapes: NASA/TM-2007-213959[R]. Washington, D. C. : NASA, 2007.
    [9] BOURGAULT Y, HABASHI W G, DOMPIERRE J, et al. A finite element method study of Eulerian droplets impingement models[J]. International Journal for Numerical Methods in Fluids, 1999, 29(4): 429-449. doi: 10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
    [10] WIROGO S, SRIRAMBHATLA S. An Eulerian method to calculate the collection efficiency on two and three dimensional bodies: AIAA 2003-1073[R]. Reston: AIAA, 2003.
    [11] VEILLARD X, HABASHI W G, AUBÉ M S, et al. FENSAP-ICE: Ice accretion in multi-stage jet engines[C]//19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009: 4158.
    [12] ALIAGA C N, AUBÉ M S, BARUZZI G S, et al. FENSAP-ICE-Unsteady: Unified in-flight icing simulation methodology for aircraft, rotorcraft, and jet engines[J]. Journal of Aircraft, 2011, 48(1): 119-126. doi: 10.2514/1.C000327
    [13] TONG X, LUKE E. Eulerian simulations of icing collection efficiency using a singularity diffusion model[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2005: 1246.
    [14] 王洪伟, 李先哲, 宋展. 通用飞机结冰适航验证关键技术及工程应用[J]. 航空学报, 2016, 37(1): 335-350.

    WANG H W, LI X Z, SONG Z. Key airworthiness validation technologies for icing of general aviation aircraft and their engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 335-350(in Chinese).
    [15] 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6): 120745.

    CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinca, 2017, 38(6): 120745(in Chinese).
    [16] XIE L, LI P, CHEN H, et al. Robust and efficient prediction of the collection efficiency in icing accretion simulation for 3D complex geometries using the Lagrangian approach I: An adaptive interpolation method based on the restricted radial basis functions[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119290. doi: 10.1016/j.ijheatmasstransfer.2019.119290
    [17] SHEN X B, TAN Y D, YU R D, et al. Effects of upstream component and air injection on water droplet impingement characteristics for downstream surfaces[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-12.
    [18] CLOETE S, AMINI S, JOHANSEN S T. Performance evaluation of a complete Lagrangian KTGF approach for dilute granular flow modelling[J]. Powder Technology, 2012, 226: 43-52. doi: 10.1016/j.powtec.2012.04.010
    [19] CHEN X, WANG J. A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas-solid flows[J]. Powder Technology, 2014, 254: 94-102. doi: 10.1016/j.powtec.2013.12.056
    [20] FOX R O. A quadrature-based third-order moment method for dilute gas-particle flows[J]. Journal of Computational Physics, 2008, 227(12): 6313-6350. doi: 10.1016/j.jcp.2008.03.014
    [21] AL-KHALIL K, HITZIGRATH R, PHILIPPI O, et al. Icing analysis and test of a business jet engine inlet duct: AIAA-2000-1040[R]. Reston: AIAA, 2000.
    [22] DONG W, ZHU J, ZHENG M, et al. Thermal analysis and testing of nonrotating cone with hot-air anti-icing system[J]. Journal of Propulsion and Power, 2015, 31(3): 1-8.
    [23] 高艳欣, 周建军, 李云单, 等. 吹气式旋转帽罩防冰特性[J]. 南京航空航天大学学报, 2016, 48(3): 359-365. doi: 10.16356/j.1005-2615.2016.03.010

    GAO Y X, ZHOU J J, LI Y D, et al. Anti-icing properties of blowing rotating spinner[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(3): 359-365(in Chinese). doi: 10.16356/j.1005-2615.2016.03.010
  • 加载中
图(15)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  41
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2021-12-19
  • 网络出版日期:  2022-01-05
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答