留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低轨道热层大气密度原位探测

李永平 朱光武 郑晓亮 艾讲赵 闫亚飞 周建华

李永平, 朱光武, 郑晓亮, 等 . 超低轨道热层大气密度原位探测[J]. 北京航空航天大学学报, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618
引用本文: 李永平, 朱光武, 郑晓亮, 等 . 超低轨道热层大气密度原位探测[J]. 北京航空航天大学学报, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618
LI Yongping, ZHU Guangwu, ZHENG Xiaoliang, et al. In-situ measurement of atmospheric density in very low Earth orbits[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618(in Chinese)
Citation: LI Yongping, ZHU Guangwu, ZHENG Xiaoliang, et al. In-situ measurement of atmospheric density in very low Earth orbits[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618(in Chinese)

超低轨道热层大气密度原位探测

doi: 10.13700/j.bh.1001-5965.2021.0618
基金项目: 

中国载人航天工程 Y59003AC40

国家子午工程 Y91GJC15ES

详细信息
    通讯作者:

    李永平, E-mail: lyp@nssc.ac.cn

  • 中图分类号: V11:P365

In-situ measurement of atmospheric density in very low Earth orbits

Funds: 

Manned Space Program of China Y59003AC40

Meridian Program of China Y91GJC15ES

More Information
  • 摘要:

    超低轨道(VLEO)由于其轨道较低,在该轨道运行的航天器在对地观测、科学研究方面具有独特优势,但对该轨道的大气密度变化特性认知不足。在阐述国内外超低轨道大气密度原位探测发展历史及现状的基础上,总结了现有超低轨道大气密度原位探测技术,对中国超低轨道大气密度原位结果进行了初步分析和讨论。结果表明:在2020年10月空间环境平静期,250 km和350 km高度大气密度相差一个量级;升降轨期间,超低轨道大气密度每千米分别下降0.025×10-12 kg/m3和0.041×10-12 kg/m3,均小于模式值的0.5倍;北纬40°时,处于午夜的升轨段(约250 km)大气密度是处于正午的降轨段(约420 km)大气密度的11.2倍,高度的影响大于地方时的影响;不同纬度下,实测日均值和模式日均值的比值从高纬的0.49降为低纬的0.39,模式值偏大。在超低轨道上,实测值总体上比模式值小,可为大气物理研究和应用研究提供基础数据。

     

  • 图 1  AE-C卫星

    Figure 1.  AE-C satellite

    图 2  DE-2卫星

    Figure 2.  DE-2 satellite

    图 3  DANDE卫星

    Figure 3.  DANDE satellite

    图 4  QB50卫星[15]

    Figure 4.  QB50 satellite[15]

    图 5  SLATS卫星

    Figure 5.  SLATS satellite

    图 6  大气密度探测器原理示意

    Figure 6.  Schematic diagram of atmospheric density detector

    图 7  大气密度实测值、太阳活动指数和地磁活动指数随时间的演化

    Figure 7.  Changes of observed results of atmospheric density, solar radiation index and geomagnetic index

    图 8  大气密度实测值随高度的变化

    Figure 8.  Changes of observed value of atmospheric density with altitude

    图 9  相同纬度(北纬40°)下升轨和降轨期间大气密度实测值随高度的变化

    Figure 9.  Changes of observed atmospheric density with altitude during orbit ascent and descent at the same latitude (40°N)

    图 10  不同纬度下大气密度实测值与MSIS00模式值及比值随高度的变化

    Figure 10.  Changes of observed result, MSIS00 model, and ratio of observed to model values with altitude at different latitudes

    表  1  中国原位大气密度探测器的主要性能

    Table  1.   Performance of Chinese in-situ atmospheric density detector

    参数 数值
    传感器内气体压力范围/Pa 5×10-8~1×10-2
    传感器内气体温度范围/℃ -20~60
    最小可检测压力/Pa 1×10-8
    温度分辨率/℃ 0.1
    压力校准总不确定度/% 3
    探测器质量/kg 1.5
    探测器功耗/W 1.5
    下载: 导出CSV

    表  2  MSIS00模式的输入和输出参数

    Table  2.   Input and output parameters of MSlS00 model

    输入/输出参数 名称
    输入参数 年、月、日(UTS), 高度, 地理纬度, 地理经度, 日出时间,81 d平均F10.7, 前1天的F10.7, 当日地磁活动指数Ap, 3 h前地磁活动指数Ap, 6 h前地磁活动指数Ap, 9 h前地磁活动指数Ap, 12~33 h前地磁活动指数Ap, 36~57 h前地磁活动指数Ap
    输出参数 He数密度, O数密度, O2数密度, N数密度, N2数密度,Ar数密度, H数密度, 原子氧数密度, 总质量密度, 外逸层温度, 高层温度
    下载: 导出CSV

    表  3  大气密度每千米下降值

    Table  3.   Decrease of atmospheric density per kilometer kg/m3

    升/降轨 每千米下降实测值 每千米下降模式值
    升轨 0.025×10-12 0.065×10-12
    降轨 0.041×10-12 0.087×10-12
    下载: 导出CSV
  • [1] 姜海富, 柴丽华, 周晶晶, 等. 国外超低轨卫星计划及环境效应研究进展[J]. 环境技术, 2015, 33(5): 30-34. doi: 10.3969/j.issn.1004-7204.2015.05.008

    JIANG H F, CHAI L H, ZHOU J J, et al. Super low orbit sate-llite program and study progress of environment effect in foreign countries[J]. Environmental Technology, 2015, 33(5): 30-34(in Chinese). doi: 10.3969/j.issn.1004-7204.2015.05.008
    [2] CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 1-18.
    [3] BANKS B A, MILLER S K, DE GROH K K, et al. Low earth orbital atomic oxygen interactions with materials: AIAA-2004-5638[R]. Reston: AIAA, 2004.
    [4] SAMWEL S W. Low earth orbital atomic oxygen erosion effect on spacecraft materials[J]. Space Research Journal, 2014, 7(1): 1-13. doi: 10.3923/srj.2014.1.13
    [5] KUMIKO Y, NOBUO O, MASAHITO T. Effect of relative intensity of 5 eV atomic oxygen and 172 nm vacuum ultraviolet in the synergism of polyimide erosion[J]. High Performance Polymers, 2016, 16(2): 221-234.
    [6] 王英鉴. 中高层大气对卫星系统的影响[J]. 中国科学(A辑), 2000, 30(S1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK2000S1004.htm

    WANG Y J. The influence of the middle and upper atmosphere on satellite systems[J]. Science in China(Series A), 2000, 30(S1): 17-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK2000S1004.htm
    [7] MAROCS F A. New satellite drag modeling capabilities[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006, 8: 5594-5606.
    [8] SARRIS T E, TALAAT E R, PALMROTH M, et al. Daedalus: A low-flying spacecraft for the exploration of the lower ther-mosphere-ionosphere[J]. Geoscientific Instrumentation Method and Data Systems, 2020, 9(1): 153-191. doi: 10.5194/gi-9-153-2020
    [9] HERRERO F A, MAYR H G, SPENCER N W. Low latitude thermospheric meridional winds between 250 and 450 km altitude: AE-E satellite data[J]. Journal of Atmospheric and Terrestrial Physics, 1988, 50(10-11): 1001-1006. doi: 10.1016/0021-9169(88)90087-6
    [10] SPENCER N W, NIEMANN H B, CARIGNAN G R. The neutral-atmosphere temperature instrument[J]. Radio Science, 1973, 8(4): 287-296. doi: 10.1029/RS008i004p00287
    [11] SPENCER N W, CARIGNAN G R. In situ measurements of thermospheric composition, temperature and winds by mass spectrometry[J]. Advances in Space Research, 1988, 8(5-6): 107-117. doi: 10.1016/0273-1177(88)90040-3
    [12] KILLEEN T L, MCCORMAC F G, BURNSA G, et al. On the dynamics and composition of the high-latitude thermosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1991, 53(9): 797-814. doi: 10.1016/0021-9169(91)90095-O
    [13] BALTHAZOR R L, BAILEY G J. Transonic neutral wind in the thermosphere observed by the DE 2 satellite[J]. Journal of Geophysical Research, 2006, 111: A01301.
    [14] MARCIN D P, SCOTT E P. An innovative method for measuring drag on small satellites[C]//The 23rd Annual AIAA/USU Conference on Small Satellites, 2009.
    [15] EVGENIY S, IGOR B, IVAN T, et al. SSAU project of the nanosatellite SamSat-QB50 for monitoring the Earth's thermosphere parameters[J]. Procedia Engineering, 2015, 104: 139-146.
    [16] KONOUE K, IGARASHI N, MAMURA S, et al. Development of super low altitude test satellite(SLATS)[C]//The 28th International Symposium on Space Technology and Science, 2011, 111(239): 43-46.
    [17] 秦国泰. 强磁暴、能量粒子暴与热层大气密度涨落之间的相关关系[J]. 空间科学学报, 2013, 33(1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201301008.htm

    QIN G T. Relationship between severe geomagnetic storm, energetic particle storms and thermosphere density strong distur-bances[J]. Chinese Journal of Space Science, 2013, 33(1): 39-47(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201301008.htm
    [18] 李永平, 朱光武, 秦国泰, 等. 不同高度和不同地磁扰动期间热层大气密度模式值与探测值的显著差异[J]. 地球物理学报, 2014, 57(11): 3703-3714. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201411026.htm

    LI Y P, ZHU G W, QIN G T, et al. Significant difference of the thermospheric density between the model and observation values of satellite during different geomagnetic storm events and different altitudes[J]. Chinese Journal of Geophysics, 2014, 57(11): 3703-3714(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201411026.htm
    [19] QIN G, QIU S, YE H, et al. The thermospheric composition different responses to geomagnetic storm in the winter and summer hemisphere measured by "SZ" atmospheric composition detectors[J]. Advances in Space Research, 2008, 42(7): 1281-1287.
    [20] 李永平, 朱光武, 秦国泰, 等. 地磁扰动期间热层大气N2数密度异常增变[J]. 中国科学: 技术科学, 2014, 44(8): 883-889. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201408008.htm

    LI Y P, ZHU G W, QIN G T, et al. The abnormal variation of N2 number density in thermosphere during geomagnetic distur-bance[J]. Science China: Technological Sciences, 2014, 44(8): 883-889(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201408008.htm
    [21] 李勰, 徐寄遥, 唐歌实, 等. APOD卫星大气密度数据处理与标校[J]. 地球物理学报, 2018, 61(9): 3567-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809007.htm

    LI X, XU J Y, TANG G S, et al. Processing and calibrating of in-situ atmospheric densities for APOD[J]. Chinese Journal of Geophysics, 2018, 61(9): 3567-3576(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809007.htm
    [22] 闫亚飞, 李永平. 中高层大气密度研究态势及热点分析[J]. 科技导报, 2020, 38(11): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202011018.htm

    YAN Y F, LI Y P. Development trend and hotspot analysis of middle and upper atmospheric density research[J]. Science & Technology Review, 2020, 38(11): 141-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202011018.htm
    [23] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16.
    [24] PICONE M, HEDIN A E, DROB D. NRLMSISE-00 model 2001[EB/OL]. [2021-10-01]. http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html.
    [25] EMMERT J T. Thermospheric mass density: A review[J]. Advances in Space Research, 2015, 56(5): 773-824.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  97
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-03-21
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答