留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宇航级T800碳纤维复合材料界面调控

李天舒 王绍凯 武清 顾轶卓 李庆辉 李敏

李天舒,王绍凯,武清,等. 宇航级T800碳纤维复合材料界面调控[J]. 北京航空航天大学学报,2023,49(8):2011-2020 doi: 10.13700/j.bh.1001-5965.2021.0619
引用本文: 李天舒,王绍凯,武清,等. 宇航级T800碳纤维复合材料界面调控[J]. 北京航空航天大学学报,2023,49(8):2011-2020 doi: 10.13700/j.bh.1001-5965.2021.0619
LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0619
Citation: LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0619

宇航级T800碳纤维复合材料界面调控

doi: 10.13700/j.bh.1001-5965.2021.0619
详细信息
    通讯作者:

    E-mail:leemy@buaa.edu.cn

  • 中图分类号: TB332

Interface adjustment of aerospace-grade T800 carbon fiber composite material

More Information
  • 摘要:

    上浆剂对高性能碳纤维(CF)表面的修饰作用及对其复合材料界面性能的调制作用至关重要。以湿法制备的宇航级T800碳纤维为研究对象,分析上浆前后纤维表面微结构、化学组成和化学反应特性的变化规律,并对其复合材料的宏微观界面性能进行表征评价。采用X射线光电子能谱(XPS)、差式扫描量热法(DSC)、傅里叶变换红外光谱(FTIR)等表征方法,分析上浆剂的反应性及其与环氧树脂(EP)、双马来酰亚胺树脂(BMI)的化学反应行为。结果表明:在树脂固化温度条件下上浆剂与纤维表面基团发生化学反应,使得纤维上浆剂提取量及纤维表面活性碳元素含量降低,并且上浆剂与EP、BMI工艺具有良好的化学反应性。经过高温处理后CF表面的上浆剂失活,CF/EP的界面剪切强度发生一定变化,CF/BMI的界面剪切强度下降13%。综上可见:具有化学活性的环氧类上浆剂可明显改善CF表面特性,进而对复合材料的界面性能产生影响,其中上浆剂与树脂体系的反应性对界面亦有影响。

     

  • 图 1  F4纤维上浆前后的表面形貌

    Figure 1.  Surface morphologies and roughness of F4 fiber before and after sizing

    图 2  F1~F4纤维上浆前后的表面粗糙度

    Figure 2.  Surface roughness of F1~F4 fibers before and after sizing

    图 3  F1~F4纤维表面上浆剂的红外光谱图

    Figure 3.  FTIR of F1-F4 fibers surface sizing agents

    图 4  F4纤维在不同热处理工艺制度下提取上浆剂的含量

    Figure 4.  Content of sizing agent extracted from F4 fibers that treated by different heat processes

    图 5  F4纤维在不同工艺制度热处理后纤维表面粗糙度

    Figure 5.  Surface roughness of F4 fibers that treated by different heat processes

    图 6  不同工艺处理后的F4纤维提取上浆剂的红外光谱

    Figure 6.  IR of sizing agents extracted from F4 fibers that treated by different processes

    图 7  不同纤维/树脂界面剪切强度对比

    Figure 7.  Comparison of interface shear strength of different fibers/resins

    图 8  树脂、F4上浆剂及其混合物的DSC曲线

    Figure 8.  DSC curves of resins, F4sizing agents and their mixtures

    图 9  EP和BMI固化前后的红外光谱

    Figure 9.  FTIR of EP and BMI resins before and after curing

    图 10  树脂与上浆剂混合物的原位红外光谱

    Figure 10.  In-situ FTIR of resin and sizing agent mixture

    图 11  不同树脂与热处理前后F4纤维的界面剪切强度

    Figure 11.  IFSS of different resins and F4 fibers before and after heat treatment

    表  1  不同T800级CF上浆前后的表面元素

    Table  1.   Surface element content of different T800 grade CF before and after sizing

    纤维类型C/%O/%N/%Si/%S/%Na/%O/C
    F174.1216.832.26.010.8400.23
    F1-US78.7216.242.432.62000.21
    F274.3519.41.734.52000.26
    F2-US79.7414.052.993.22000.18
    F376.3216.392.983.390.730.20.21
    F3-US78.1617.122.282.44000.22
    F476.116.992.283.710.9100.22
    F4-US77.5816.852.363.21000.22
    下载: 导出CSV

    表  2  不同CF XPS的C1s分峰拟合结果

    Table  2.   XPS C1s peak fitting results of different CF %

    纤维类型参比基团含量−C−C−;
    −C−H−含量
    −C−OH−C−O−;
    −C−NH2含量
    C−O−C=O;
    环氧基团含量
    −C=O−
    C=N含量
    −O−C=OHO−
    C=O含量
    活性碳元素含量
    (Peak1,
    能量284.8 eV)
    (Peak2,
    能量285.0 eV)
    (Peak3,
    能量286.1 eV)
    (Peak4,
    能量286.6 eV)
    (Peak5,
    能量287.7 eV)
    (Peak6,
    能量289.4 eV)
    F138.5426.0510.9216.356.451.6935.41
    F1- US70.2211.650.006.027.154.9618.13
    F236.6712.5920.5917.493.319.3550.74
    F2- US37.0918.0224.050.0011.359.4944.89
    F344.2013.9216.3612.296.406.8541.90
    F3- US59.8120.801.533.756.797.3119.38
    F424.6113.7327.9722.034.906.7761.67
    F4- US73.217.382.844.436.665.4919.42
    下载: 导出CSV

    表  3  不同工艺制度处理后F4纤维表面元素

    Table  3.   Surface element content of F4 fiber after different heat treatment processes

    纤维类型C/%O/%N/%Si/%S/%O/C
    F476.116.992.283.710.910.22
    F4+EP工艺82.0315.932.04000.19
    F4+BMI 工艺89.9810.020000.11
    下载: 导出CSV

    表  4  不同工艺处理后F4纤维XPS的C1s分峰拟合结果

    Table  4.   XPS C1s peak fitting results of F4 fiber after different heat treatment processes %

    纤维类型参比基团含量−C−C−;
    −C−H−含量
    −C−OH−C−O−;
    −C−NH2含量
    C−O−C=O;
    环氧基团含量
    −C=O−
    C=N含量
    −O−C=OHO−
    C=O含量
    活性碳元素含量
    (Peak1,
    能量284.8 eV)
    (Peak2,
    能量285.0 eV)
    (Peak3,
    能量286.1 eV)
    (Peak4,
    能量286.6 eV)
    (Peak5,
    能量287.7 eV)
    (Peak6,
    能量289.4 eV)
    F424.6113.7327.9722.034.906.7761.67
    F4+EP工艺45.0526.6620.527.760028.28
    F4+BMI工艺37.2448.2911.383.090014.47
    下载: 导出CSV

    表  5  不同树脂/上浆剂的DSC峰值温度与放热

    Table  5.   DSC peak temperature and heat of different resins/sizing agents

    树脂/上浆剂第1峰值
    温度/℃
    第2峰值
    温度/℃
    第3峰值
    温度/℃
    放热/(J·g−1)
    EP 229.2 264.7 421.5
    F4282.7246.8
    EP和F4224.2282.7360.4
    BMI156.3258.1176.6482.8
    F4282.7246.8
    BMI和F4126.6277.7316.1
    下载: 导出CSV
  • [1] CONNELL M E, CROSS W M, SNYDER T G, et al. Direct monitoring of silane/epoxy interphase chemistry[J]. Composites Part A Applied Science and Manufacturing, 1998, 29(5): 495-502.
    [2] 高爱君. PAN基碳纤维成分、结构及性能的高温演变机理[D]. 北京: 北京化工大学, 2012.

    GAO A J. Evolution mechanism of composition, structure and mechanical properties of carbon fiber during high temperature heat treatment[D]. Beijing: Beijing University of Chemical Technology, 2012 (in Chinese).
    [3] SHARMA M, GAO S L, MÄDER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology, 2014, 102(6): 35-50.
    [4] PARK S J, KIM B J. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior[J]. Materials Science and Engineering:A, 2005, 408(1-2): 269-273. doi: 10.1016/j.msea.2005.08.129
    [5] KING T R, ADAMS D F, BUTTRY D A. Anodic oxidation of pitch-precursor carbon fibers in ammonium sulfate solutions: Batch screening treatment results[J]. Composites Science and Technology, 1992, 44(4): 351-359. doi: 10.1016/0266-3538(92)90071-A
    [6] VARELIDIS P C, MCCULLOUGH R L, PAPASPYRIDES C D. The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Composites Science and Technology, 1999, 59(12): 1813-1823. doi: 10.1016/S0266-3538(99)00039-1
    [7] GU Y Z, LI M, WANG J, et al. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique[J]. Carbon, 2010, 48(11): 3229-3235. doi: 10.1016/j.carbon.2010.05.008
    [8] DAI Z S, SHI F H, ZHANG B Y, et al. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(15): 6980-6985. doi: 10.1016/j.apsusc.2011.03.047
    [9] BOWMAN S, JIANG Q R, MEMON H, et al. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites[J]. Molecules, 2018, 23(3): 547. doi: 10.3390/molecules23030547
    [10] LIU J Y, GE H Y, CHEN J A, et al. The preparation of emulsion type sizing agent for carbon fiber and the properties of carbon fiber/vinyl ester resin composites[J]. Journal of Applied Polymer Science, 2012, 124(1): 864-872. doi: 10.1002/app.35126
    [11] DILSIZ N, WIGHTMAN J P. Surface analysis of unsized and sized carbon fibers[J]. Carbon, 1999, 37(7): 1105-1114. doi: 10.1016/S0008-6223(98)00300-5
    [12] LUO Y F, ZHAO Y, DUAN Y X, et al. Surface and wettability property analysis of CCF300 carbon fibers with different sizing or without sizing[J]. Materials & Design, 2011, 32(2): 941-946.
    [13] REN P G, LIANG G Z, ZHANG Z P. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites[J]. Polymer Composites, 2006, 27(5): 591-598. doi: 10.1002/pc.20230
    [14] YANG Y, LU C X, SU X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters, 2007, 61(17): 3601-3604. doi: 10.1016/j.matlet.2006.11.121
    [15] ZHANG C H, ZHANG Z Q, CAO H L. Effects of epoxy/SiO2 hybrid sizing on the mechanical properties of carbon fiber composites[J]. Solid State Phenomena, 2007, 121: 1253-1256.
    [16] ZHANG X J, KANG S M, LIU Z Q. Synthesis of latent curing agent for epoxy resin[J]. Advanced Materials Research, 2010, 150-151: 988-991. doi: 10.4028/www.scientific.net/AMR.150-151.988
    [17] YUAN H J, ZHANG S C, LU C X, et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing[J]. Applied Surface Science, 2013, 279: 279-284. doi: 10.1016/j.apsusc.2013.04.085
    [18] CHEN J A, LIU J Y, WANG D Z. Effect of emulsion type sizing agents on the properties of carbon fiber and carbon fiber reinforced polymer matrix composite[J]. Advanced Materials Research, 2011, 236-238: 2295-2298. doi: 10.4028/www.scientific.net/AMR.236-238.2295
    [19] LI J, FAN Q, CHEN Z H, et al. Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(s2): s457-s461.
    [20] LIU W B, ZHANG S, HAO L F, et al. Properties of carbon fiber sized with poly(phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science, 2013, 128(6): 3702-3709. doi: 10.1002/app.38605
    [21] CHENG T H, ZHANG J, YUMITORI S, et al. Sizing resin structure and interphase formation in carbon fibre composites[J]. Composites, 1994, 25(7): 661-670. doi: 10.1016/0010-4361(94)90199-6
    [22] DAI Z S, ZHANG B Y, SHI F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(20): 8457-8461. doi: 10.1016/j.apsusc.2011.04.129
    [23] WU Q, LI M, GU Y Z, et al. Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1529-1538. doi: 10.1016/j.cja.2015.05.005
    [24] WU Q, LI M, GU Y Z, et al. Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite[J]. Composites Part A:Applied Science and Manufacturing, 2014, 56: 143-149. doi: 10.1016/j.compositesa.2013.10.003
    [25] LIU Y T, LI L, WANG J P, et al. Effect of carbon nanotube addition in two sizing agents on interfacial properties of carbon fiber/polycarbonate composites[J]. New Carbon Materials, 2021, 36(3): 639-648. doi: 10.1016/S1872-5805(21)60035-5
    [26] LIU H S, ZHAO Y, CHEN F, et al. Effects of polyetherimide sizing involving carbon nanotubes on interfacial performance of carbon fiber/polyetheretherketone composites[J]. Polymers for Advanced Technologies, 2021, 32(9): 3689-3700. doi: 10.1002/pat.5389
    [27] WU G S, MA L C, LIU L, et al. Interfacial improvement of carbon fiber-reinforced methylphenylsilicone resin composites with sizing agent containing functionalized carbon nanotubes[J]. Journal of Adhesion Science and Technology, 2015, 29(21): 2295-2310. doi: 10.1080/01694243.2015.1064509
    [28] WU Z J, CUI H Y, CHEN L, et al. Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent[J]. Composites Science and Technology, 2018, 164: 195-203. doi: 10.1016/j.compscitech.2018.05.051
    [29] 秦建杰. 碳纤维表面连续生长碳纳米管及其增强复合材料的研究[D]. 济南: 山东大学, 2021.

    QIN J J. Study on the continuous growth of carbon nanotubes on carbon fiber surfaces and their reinforced composites[D]. Jinan: Shandong University, 2021 (in Chinese).
    [30] YAO Z Q, WANG C G, QIN J J, et al. Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures[J]. Carbon, 2020, 164: 133-142. doi: 10.1016/j.carbon.2020.03.060
    [31] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO J W, ZHONG X Y, ZHANG D J, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering, 2020, 48(8): 33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208
    [32] 于广, 魏化震, 李大勇, 等. 碳纤维上浆剂及其对复合材料界面性能的影响研究进展[J]. 工程塑料应用, 2019, 47(2): 143-147. doi: 10.3969/j.issn.1001-3539.2019.02.026

    YU G, WEI H Z, LI D Y, et al. Research progress of carbon fiber sizing agent and its effects on interface properties of composites[J]. Engineering Plastics Application, 2019, 47(2): 143-147(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.02.026
    [33] 国家市场监督管理总局, 国家标准化管理委员会. 聚丙烯腈基碳纤维: GB/T 26752—2020[S]. 北京: 中国标准出版社, 2020.

    State Administration for Market Regulation, Standardization Administration. PAN-based carbon fiber: GB/T 26752—2020[S]. Beijing: Standards Press of China, 2020 (in Chinese).
    [34] 张琳, 郑莉, 迟波. 碳纤维/TDE85环氧树脂复合材料界面性能的研究[J]. 玻璃钢/复合材料, 2013, 3: 58-61.

    ZHANG L, ZHENG L, CHI B. Study of interfacial performance of T800/TDE85 composite[J]. Fiber Reinforced Plastics/Composites, 2013, 3: 58-61(in Chinese).
    [35] 王新庆, 柳肇博, 刘寒松, 等. 上浆剂对国产T800级碳纤维增强热固性复合材料界面性能的影响[J]. 复合材料学报, 2022, 39(9): 4393-4405. doi: 10.13801/j.cnki.fhclxb.20220104.001

    WANG X Q, LIU Z B, LIU H S, et al. Effect of sizing agent on interfacial properties of domestic T800 grade carbon fiber reinforced thermosetting composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4393-4405(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220104.001
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  56
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 录用日期:  2022-01-02
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答