-
摘要:
上浆剂对高性能碳纤维(CF)表面的修饰作用及对其复合材料界面性能的调制作用至关重要。以湿法制备的宇航级T800碳纤维为研究对象,分析上浆前后纤维表面微结构、化学组成和化学反应特性的变化规律,并对其复合材料的宏微观界面性能进行表征评价。采用X射线光电子能谱(XPS)、差式扫描量热法(DSC)、傅里叶变换红外光谱(FTIR)等表征方法,分析上浆剂的反应性及其与环氧树脂(EP)、双马来酰亚胺树脂(BMI)的化学反应行为。结果表明:在树脂固化温度条件下上浆剂与纤维表面基团发生化学反应,使得纤维上浆剂提取量及纤维表面活性碳元素含量降低,并且上浆剂与EP、BMI工艺具有良好的化学反应性。经过高温处理后CF表面的上浆剂失活,CF/EP的界面剪切强度发生一定变化,CF/BMI的界面剪切强度下降13%。综上可见:具有化学活性的环氧类上浆剂可明显改善CF表面特性,进而对复合材料的界面性能产生影响,其中上浆剂与树脂体系的反应性对界面亦有影响。
Abstract:The effect of the sizing agent on the surface modification of high-performance carbon fiber (CF) and the modulation effect on the interface performance of its composite is very important. In this paper, the aerospace-grade T800 carbon fibers prepared by the wet method are used, and the changes in the surface microstructure, chemical composition, and chemical reaction characteristics of the fiber before and after sizing are analyzed, and the macro and micro interface properties of the composites are characterized. In addition, the reactivity of the sizing agent and its chemical reaction behavior with epoxy resin (EP) and bismaleimide resin (BMI) were examined using X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and other characterization techniques. The results show that the sizing agent reacts chemically with the groups on the fiber surface under the curing temperature of the resin so that the extraction amount of the sizing agent and the content of active carbon atoms on the fiber surface is reduced. The sizing agent has good chemical reaction characteristics with EP and BMI. The surface of CF sizing agent is rendered inactive after the high-temperature treatment, which also results in a little change in the interface shear strength between CF and EP but a 13% reduction between CF and BMI. In conclusion, the epoxy sizing agent with chemical activity can significantly improve the surface properties of carbon fiber, and then affect the interface properties of composites, in which the reactivity between the sizing agent and resin also affects the interface performance.
-
Key words:
- sizing agent /
- carbon fiber /
- chemical reaction /
- interface adjustment /
- composite material
-
表 1 不同T800级CF上浆前后的表面元素
Table 1. Surface element content of different T800 grade CF before and after sizing
纤维类型 C/% O/% N/% Si/% S/% Na/% O/C F1 74.12 16.83 2.2 6.01 0.84 0 0.23 F1-US 78.72 16.24 2.43 2.62 0 0 0.21 F2 74.35 19.4 1.73 4.52 0 0 0.26 F2-US 79.74 14.05 2.99 3.22 0 0 0.18 F3 76.32 16.39 2.98 3.39 0.73 0.2 0.21 F3-US 78.16 17.12 2.28 2.44 0 0 0.22 F4 76.1 16.99 2.28 3.71 0.91 0 0.22 F4-US 77.58 16.85 2.36 3.21 0 0 0.22 表 2 不同CF XPS的C1s分峰拟合结果
Table 2. XPS C1s peak fitting results of different CF
% 纤维类型 参比基团含量 −C−C−;
−C−H−含量−C−OH−C−O−;
−C−NH2含量C−O−C=O;
环氧基团含量−C=O−
C=N含量−O−C=OHO−
C=O含量活性碳元素含量 (Peak1,
能量284.8 eV)(Peak2,
能量285.0 eV)(Peak3,
能量286.1 eV)(Peak4,
能量286.6 eV)(Peak5,
能量287.7 eV)(Peak6,
能量289.4 eV)F1 38.54 26.05 10.92 16.35 6.45 1.69 35.41 F1- US 70.22 11.65 0.00 6.02 7.15 4.96 18.13 F2 36.67 12.59 20.59 17.49 3.31 9.35 50.74 F2- US 37.09 18.02 24.05 0.00 11.35 9.49 44.89 F3 44.20 13.92 16.36 12.29 6.40 6.85 41.90 F3- US 59.81 20.80 1.53 3.75 6.79 7.31 19.38 F4 24.61 13.73 27.97 22.03 4.90 6.77 61.67 F4- US 73.21 7.38 2.84 4.43 6.66 5.49 19.42 表 3 不同工艺制度处理后F4纤维表面元素
Table 3. Surface element content of F4 fiber after different heat treatment processes
纤维类型 C/% O/% N/% Si/% S/% O/C F4 76.1 16.99 2.28 3.71 0.91 0.22 F4+EP工艺 82.03 15.93 2.04 0 0 0.19 F4+BMI 工艺 89.98 10.02 0 0 0 0.11 表 4 不同工艺处理后F4纤维XPS的C1s分峰拟合结果
Table 4. XPS C1s peak fitting results of F4 fiber after different heat treatment processes
% 纤维类型 参比基团含量 −C−C−;
−C−H−含量−C−OH−C−O−;
−C−NH2含量C−O−C=O;
环氧基团含量−C=O−
C=N含量−O−C=OHO−
C=O含量活性碳元素含量 (Peak1,
能量284.8 eV)(Peak2,
能量285.0 eV)(Peak3,
能量286.1 eV)(Peak4,
能量286.6 eV)(Peak5,
能量287.7 eV)(Peak6,
能量289.4 eV)F4 24.61 13.73 27.97 22.03 4.90 6.77 61.67 F4+EP工艺 45.05 26.66 20.52 7.76 0 0 28.28 F4+BMI工艺 37.24 48.29 11.38 3.09 0 0 14.47 表 5 不同树脂/上浆剂的DSC峰值温度与放热
Table 5. DSC peak temperature and heat of different resins/sizing agents
树脂/上浆剂 第1峰值
温度/℃第2峰值
温度/℃第3峰值
温度/℃放热/(J·g−1) EP 229.2 264.7 421.5 F4 282.7 246.8 EP和F4 224.2 282.7 360.4 BMI 156.3 258.1 176.6 482.8 F4 282.7 246.8 BMI和F4 126.6 277.7 316.1 -
[1] CONNELL M E, CROSS W M, SNYDER T G, et al. Direct monitoring of silane/epoxy interphase chemistry[J]. Composites Part A Applied Science and Manufacturing, 1998, 29(5): 495-502. [2] 高爱君. PAN基碳纤维成分、结构及性能的高温演变机理[D]. 北京: 北京化工大学, 2012.GAO A J. Evolution mechanism of composition, structure and mechanical properties of carbon fiber during high temperature heat treatment[D]. Beijing: Beijing University of Chemical Technology, 2012 (in Chinese). [3] SHARMA M, GAO S L, MÄDER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology, 2014, 102(6): 35-50. [4] PARK S J, KIM B J. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior[J]. Materials Science and Engineering:A, 2005, 408(1-2): 269-273. doi: 10.1016/j.msea.2005.08.129 [5] KING T R, ADAMS D F, BUTTRY D A. Anodic oxidation of pitch-precursor carbon fibers in ammonium sulfate solutions: Batch screening treatment results[J]. Composites Science and Technology, 1992, 44(4): 351-359. doi: 10.1016/0266-3538(92)90071-A [6] VARELIDIS P C, MCCULLOUGH R L, PAPASPYRIDES C D. The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Composites Science and Technology, 1999, 59(12): 1813-1823. doi: 10.1016/S0266-3538(99)00039-1 [7] GU Y Z, LI M, WANG J, et al. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique[J]. Carbon, 2010, 48(11): 3229-3235. doi: 10.1016/j.carbon.2010.05.008 [8] DAI Z S, SHI F H, ZHANG B Y, et al. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(15): 6980-6985. doi: 10.1016/j.apsusc.2011.03.047 [9] BOWMAN S, JIANG Q R, MEMON H, et al. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites[J]. Molecules, 2018, 23(3): 547. doi: 10.3390/molecules23030547 [10] LIU J Y, GE H Y, CHEN J A, et al. The preparation of emulsion type sizing agent for carbon fiber and the properties of carbon fiber/vinyl ester resin composites[J]. Journal of Applied Polymer Science, 2012, 124(1): 864-872. doi: 10.1002/app.35126 [11] DILSIZ N, WIGHTMAN J P. Surface analysis of unsized and sized carbon fibers[J]. Carbon, 1999, 37(7): 1105-1114. doi: 10.1016/S0008-6223(98)00300-5 [12] LUO Y F, ZHAO Y, DUAN Y X, et al. Surface and wettability property analysis of CCF300 carbon fibers with different sizing or without sizing[J]. Materials & Design, 2011, 32(2): 941-946. [13] REN P G, LIANG G Z, ZHANG Z P. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites[J]. Polymer Composites, 2006, 27(5): 591-598. doi: 10.1002/pc.20230 [14] YANG Y, LU C X, SU X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters, 2007, 61(17): 3601-3604. doi: 10.1016/j.matlet.2006.11.121 [15] ZHANG C H, ZHANG Z Q, CAO H L. Effects of epoxy/SiO2 hybrid sizing on the mechanical properties of carbon fiber composites[J]. Solid State Phenomena, 2007, 121: 1253-1256. [16] ZHANG X J, KANG S M, LIU Z Q. Synthesis of latent curing agent for epoxy resin[J]. Advanced Materials Research, 2010, 150-151: 988-991. doi: 10.4028/www.scientific.net/AMR.150-151.988 [17] YUAN H J, ZHANG S C, LU C X, et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing[J]. Applied Surface Science, 2013, 279: 279-284. doi: 10.1016/j.apsusc.2013.04.085 [18] CHEN J A, LIU J Y, WANG D Z. Effect of emulsion type sizing agents on the properties of carbon fiber and carbon fiber reinforced polymer matrix composite[J]. Advanced Materials Research, 2011, 236-238: 2295-2298. doi: 10.4028/www.scientific.net/AMR.236-238.2295 [19] LI J, FAN Q, CHEN Z H, et al. Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(s2): s457-s461. [20] LIU W B, ZHANG S, HAO L F, et al. Properties of carbon fiber sized with poly(phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science, 2013, 128(6): 3702-3709. doi: 10.1002/app.38605 [21] CHENG T H, ZHANG J, YUMITORI S, et al. Sizing resin structure and interphase formation in carbon fibre composites[J]. Composites, 1994, 25(7): 661-670. doi: 10.1016/0010-4361(94)90199-6 [22] DAI Z S, ZHANG B Y, SHI F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(20): 8457-8461. doi: 10.1016/j.apsusc.2011.04.129 [23] WU Q, LI M, GU Y Z, et al. Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1529-1538. doi: 10.1016/j.cja.2015.05.005 [24] WU Q, LI M, GU Y Z, et al. Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite[J]. Composites Part A:Applied Science and Manufacturing, 2014, 56: 143-149. doi: 10.1016/j.compositesa.2013.10.003 [25] LIU Y T, LI L, WANG J P, et al. Effect of carbon nanotube addition in two sizing agents on interfacial properties of carbon fiber/polycarbonate composites[J]. New Carbon Materials, 2021, 36(3): 639-648. doi: 10.1016/S1872-5805(21)60035-5 [26] LIU H S, ZHAO Y, CHEN F, et al. Effects of polyetherimide sizing involving carbon nanotubes on interfacial performance of carbon fiber/polyetheretherketone composites[J]. Polymers for Advanced Technologies, 2021, 32(9): 3689-3700. doi: 10.1002/pat.5389 [27] WU G S, MA L C, LIU L, et al. Interfacial improvement of carbon fiber-reinforced methylphenylsilicone resin composites with sizing agent containing functionalized carbon nanotubes[J]. Journal of Adhesion Science and Technology, 2015, 29(21): 2295-2310. doi: 10.1080/01694243.2015.1064509 [28] WU Z J, CUI H Y, CHEN L, et al. Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent[J]. Composites Science and Technology, 2018, 164: 195-203. doi: 10.1016/j.compscitech.2018.05.051 [29] 秦建杰. 碳纤维表面连续生长碳纳米管及其增强复合材料的研究[D]. 济南: 山东大学, 2021.QIN J J. Study on the continuous growth of carbon nanotubes on carbon fiber surfaces and their reinforced composites[D]. Jinan: Shandong University, 2021 (in Chinese). [30] YAO Z Q, WANG C G, QIN J J, et al. Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures[J]. Carbon, 2020, 164: 133-142. doi: 10.1016/j.carbon.2020.03.060 [31] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48. doi: 10.11868/j.issn.1001-4381.2020.000208BAO J W, ZHONG X Y, ZHANG D J, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering, 2020, 48(8): 33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208 [32] 于广, 魏化震, 李大勇, 等. 碳纤维上浆剂及其对复合材料界面性能的影响研究进展[J]. 工程塑料应用, 2019, 47(2): 143-147. doi: 10.3969/j.issn.1001-3539.2019.02.026YU G, WEI H Z, LI D Y, et al. Research progress of carbon fiber sizing agent and its effects on interface properties of composites[J]. Engineering Plastics Application, 2019, 47(2): 143-147(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.02.026 [33] 国家市场监督管理总局, 国家标准化管理委员会. 聚丙烯腈基碳纤维: GB/T 26752—2020[S]. 北京: 中国标准出版社, 2020.State Administration for Market Regulation, Standardization Administration. PAN-based carbon fiber: GB/T 26752—2020[S]. Beijing: Standards Press of China, 2020 (in Chinese). [34] 张琳, 郑莉, 迟波. 碳纤维/TDE85环氧树脂复合材料界面性能的研究[J]. 玻璃钢/复合材料, 2013, 3: 58-61.ZHANG L, ZHENG L, CHI B. Study of interfacial performance of T800/TDE85 composite[J]. Fiber Reinforced Plastics/Composites, 2013, 3: 58-61(in Chinese). [35] 王新庆, 柳肇博, 刘寒松, 等. 上浆剂对国产T800级碳纤维增强热固性复合材料界面性能的影响[J]. 复合材料学报, 2022, 39(9): 4393-4405. doi: 10.13801/j.cnki.fhclxb.20220104.001WANG X Q, LIU Z B, LIU H S, et al. Effect of sizing agent on interfacial properties of domestic T800 grade carbon fiber reinforced thermosetting composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4393-4405(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220104.001