留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常规和内凹六边形管横向压缩载荷下变形模式和吸能性能

刘杰 刘华 杨嘉陵

刘杰,刘华,杨嘉陵. 常规和内凹六边形管横向压缩载荷下变形模式和吸能性能[J]. 北京航空航天大学学报,2023,49(8):2021-2028 doi: 10.13700/j.bh.1001-5965.2021.0623
引用本文: 刘杰,刘华,杨嘉陵. 常规和内凹六边形管横向压缩载荷下变形模式和吸能性能[J]. 北京航空航天大学学报,2023,49(8):2021-2028 doi: 10.13700/j.bh.1001-5965.2021.0623
LIU J,LIU H,YANG J L. Collapse modes and energy absorption performance of conventional and re-entrant hexagonal tubes under lateral compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2021-2028 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0623
Citation: LIU J,LIU H,YANG J L. Collapse modes and energy absorption performance of conventional and re-entrant hexagonal tubes under lateral compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2021-2028 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0623

常规和内凹六边形管横向压缩载荷下变形模式和吸能性能

doi: 10.13700/j.bh.1001-5965.2021.0623
基金项目: 国家自然科学基金(11472034,11472035);北京航空航天大学博士研究生卓越学术基金
详细信息
    通讯作者:

    E-mail: liuhuarui@buaa.edu.cn

  • 中图分类号: O344

Collapse modes and energy absorption performance of conventional and re-entrant hexagonal tubes under lateral compression

Funds: National Natural Science Foundation of China (11472034,11472035);Academic Excellence Foundation of BUAA for PhD Students
More Information
  • 摘要:

    六边形薄壁结构被广泛应用于吸能防护领域。为提升六边形薄壁管的吸能性能,对常规六边形薄壁管和内凹六边形薄壁管在横向压缩载荷作用下的变形模式和吸能性能进行对比研究。针对这2种六边形管分别建立考虑应变强化效应的理论模型,运用商业软件ABAQUS进行有限元分析。对比理论模型和有限元分析得到的六边形管变形模式及载荷-位移关系,理论结果和有限元结果具有良好的一致性。针对2种六边形管,分别设置不同的侧边倾斜角,探究不同六边形管在横向压缩载荷作用下的塑性变形行为和吸能性能。结果表明:内凹六边形管相比于对应的常规六边形管具备更优的吸能性能,内凹六边形管的冲程效率和总吸能分别为对应的常规六边形管的1.41~1.62倍和1.79~1.83倍。另外,内凹六边形管所需的横向安装空间更小。

     

  • 图 1  常规六边形管和内凹六边形管变形模式

    Figure 1.  Deformation modes of conventional and re-entrant hexagonal tubes

    图 2  常规六边形管横向压缩变形1/4模型

    Figure 2.  Model of one-quarter of conventional hexagonal tube under lateral compression

    图 3  内凹六边形管横向压缩变形1/4模型

    Figure 3.  Model of one-quarter of re-entrant hexagonal tube under lateral compression

    图 4  常规和内凹六边形管有限元模型

    Figure 4.  Finite element models of conventional and re-entrant hexagonal tubes

    图 5  常规六边形管压缩过程Mises应力云图

    Figure 5.  Mises stress cloud diagram of conventional hexagonal tube under lateral compression

    图 6  内凹六边形管压缩过程Mises应力云图

    Figure 6.  Mises stress cloud diagram of re-entrant hexagonal tube under lateral compression

    图 7  六边形管等效塑性应变云图

    Figure 7.  Equivalent plastic strain cloud diagram of hexagonal tube

    图 8  塑性铰等效长度系数

    Figure 8.  Equivalent length factor of plastic hinge

    图 9  不同倾斜角六边形管载荷-位移关系曲线和能量吸收效率-位移曲线

    Figure 9.  Force-displacement relation curves and energy absorption efficiency-displacement relation curves of hexagonal tubes with different inclination angles

    图 10  不同倾斜角六边形管载荷-位移关系曲线

    Figure 10.  Force-displacement relation curves of hexagonal tubes with different inclination angles

    图 11  不同倾斜角六边形管冲程效率

    Figure 11.  Stroke efficiency of hexagonal tubes with different inclination angles

    图 12  不同倾斜角六边形管总吸能

    Figure 12.  Total energy absorption of hexagonal tubes with different inclination angles

  • [1] BAROUTAJI A, SAJJIA M, OLABI A G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments[J]. Thin-Walled Structures, 2017, 118: 137-163. doi: 10.1016/j.tws.2017.05.018
    [2] LU G, YU T X. Energy absorption of structures and materials[M]. Cambridge: Woodhead Publishing Ltd, 2003.
    [3] HA N S, PHAM T M, HAO H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing[J]. International Journal of Mechanical Sciences, 2021, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
    [4] TIAN K, ZHANG Y, YANG F, et al. Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths[J]. International Journal of Mechanical Sciences, 2020, 166: 105239. doi: 10.1016/j.ijmecsci.2019.105239
    [5] WANG Z G, ZHANG J, LI Z D, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression[J]. International Journal of Mechanical Sciences, 2020, 186: 105893. doi: 10.1016/j.ijmecsci.2020.105893
    [6] SAID M R, REDDY T Y. Quasi-static response of laterally simple compressed hexagonal rings[J]. International Journal of Crashworthiness, 2002, 7(3): 345-364.
    [7] NIKNEJAD A, RAHMANI D M. Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns[J]. Materials & Design, 2014, 53: 250-261.
    [8] ZHOU Z P, LIU F, GAO Y H, et al. Experimental study on the lateral compression energy absorption characteristics of hexagonal steel tube filled with polyurethane foam[J]. Applied Mechanics and Materials, 2014, 692: 210-216. doi: 10.4028/www.scientific.net/AMM.692.210
    [9] LIU Y C. Thin-walled curved hexagonal beams in crashes-FEA and design[J]. International Journal of Crashworthiness, 2010, 15(2): 151-159. doi: 10.1080/13588260903094400
    [10] 唐治, 付洪源, 王建, 等. 六边薄壁构件在准静态径向压缩下的吸能特性[J]. 地下空间与工程学报, 2018, 14(1): 72-77.

    TANG Z, FU H Y, WANG J, et al. Energy absorption characteristics of hexagonal thin-walled component under quasi-static radial compression[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 72-77(in Chinese).
    [11] GOWID S, MAHDI E, ALABTAH F. Modeling and optimization of the crushing behavior and energy absorption of plain weave composite hexagonal quadruple ring systems using artificial neural network[J]. Composite Structures, 2019, 229: 111473. doi: 10.1016/j.compstruct.2019.111473
    [12] TRAN T N, BAROUTAJI A, ESTRADA Q, et al. Crashworthiness analysis and optimization of standard and windowed multi-cell hexagonal tubes[J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2191-2209. doi: 10.1007/s00158-020-02794-y
    [13] 仝军, 杨晓翔, 韦铁平, 等. 超大轴向冲击载荷下六边形蜂窝铝结构的吸能特性优化研究[J]. 机电工程, 2021, 38(7): 897-901. doi: 10.3969/j.issn.1001-4551.2021.07.014

    TONG J, YANG X X, WEI T P, et al. Optimization of energy absorption characteristics of hexagonal honeycomb aluminum structure under super large axial impact load[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(7): 897-901(in Chinese). doi: 10.3969/j.issn.1001-4551.2021.07.014
    [14] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687. doi: 10.6052/0459-1879-18-381

    REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687(in Chinese). doi: 10.6052/0459-1879-18-381
    [15] 任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性[J]. 航空学报, 2021, 42(3): 223978.

    REN Y R, JIANG H Y, JIN Q D, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 223978(in Chinese).
    [16] REDWOOD R G. Discussion: “Crushing of a tube between rigid plates” (DeRuntz, jr., john A., and hodge, jr., P. G., 1963, ASME J. appl. mech., 30, pp. 391–395)[J]. Journal of Applied Mechanics, 1964, 31(2): 357-358. doi: 10.1115/1.3629622
    [17] 庄茁, 由小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009: 234.

    ZHUANG Z, YOU X C, LIAO J H, et al. Finite element analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009: 234(in Chinese).
    [18] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids[J]. Journal of Cellular Plastics, 2006, 42(5): 371-392. doi: 10.1177/0021955X06063519
    [19] LU J Y, WANG Y H, ZHAI X M, et al. Impact behavior of a cladding sandwich panel with aluminum foam-filled tubular cores[J]. Thin-Walled Structures, 2021, 169: 108459. doi: 10.1016/j.tws.2021.108459
    [20] ZHANG J X, GUO H Y, DU J L, et al. Splitting and curling collapse of metal foam core square sandwich metal tubes: Experimental and theoretical investigations[J]. Thin-Walled Structures, 2021, 169: 108346. doi: 10.1016/j.tws.2021.108346
  • 加载中
图(12)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  35
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2022-01-02
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答