留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字孪生技术的智慧停车场总体架构

尚可 张宇琳 张飞舟

尚可,张宇琳,张飞舟. 基于数字孪生技术的智慧停车场总体架构[J]. 北京航空航天大学学报,2023,49(8):2029-2038 doi: 10.13700/j.bh.1001-5965.2021.0624
引用本文: 尚可,张宇琳,张飞舟. 基于数字孪生技术的智慧停车场总体架构[J]. 北京航空航天大学学报,2023,49(8):2029-2038 doi: 10.13700/j.bh.1001-5965.2021.0624
SHANG K,ZHANG Y L,ZHANG F Z. Architecture of smart parking lot based on digital twin technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2029-2038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0624
Citation: SHANG K,ZHANG Y L,ZHANG F Z. Architecture of smart parking lot based on digital twin technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2029-2038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0624

基于数字孪生技术的智慧停车场总体架构

doi: 10.13700/j.bh.1001-5965.2021.0624
详细信息
    通讯作者:

    E-mail:zhangfz@pku.edu.cn

  • 中图分类号: V221+.3;TB553

Architecture of smart parking lot based on digital twin technology

More Information
  • 摘要:

    在城市大型停车场的智慧建设研究中,目前主要集中于硬件的升级改造及简单的人机交互,存在数字模拟与物理对象脱节、大数据利用率低的问题。为此,提出依托数字孪生技术对停车场的全要素进行数字仿真和物理映射,搭建4层数字孪生停车场基本体系架构,包括停车场全要素物理实体、停车场信息物理融合、停车场数字孪生模型、停车场应用智能服务平台,通过实时的信息传输,实现物理空间、物理对象与数字模型、虚拟对象之间的虚实映射;通过数字孪生域的不断仿真迭代,实现对物理域的实时决策和仿真预测,为用户及管理员提供泊位分配、泊车诱导、风险评估等服务。在所搭建架构内,分析了停车场全要素孪生数字精准建模、短时泊位预测、泊位分配与交替停车、泊车诱导这4大关键技术的重要性及设计要求,并通过ThingJS、MATLAB等工具对地下停车场三维空间结构进行建模及对场内泊车诱导路径规划的仿真和可视化,初步验证了构建数字孪生停车场的可行性。

     

  • 图 1  数字孪生系统通用框架

    Figure 1.  General framework of digital twin system

    图 2  基于数字孪生的停车场整体架构

    Figure 2.  Overall architecture of parking lot based on digital twin technology

    图 3  车辆出入库管理系统仿真界面

    Figure 3.  Simulation interface of vehicle entry and exit management system

    图 4  用户停车及取车行为轨迹示意图

    Figure 4.  Trajectory diagram of parking and pickup behaviors of users

    图 5  数字孪生停车场的应用功能及与物理域的交互模式

    Figure 5.  Application function of digital twin parking lot and interaction mode with physical domain

    图 6  停车场数字孪生模型总体架构中各模型之间的关系

    Figure 6.  Relationships among components of overall architecture in parking lot digital twin model

    图 7  地下停车场三维空间结构建模

    Figure 7.  Three-dimensional spatial structure modeling of an underground parking lot

    图 8  基于PLDTM的信息物理融合系统

    Figure 8.  Cyber-physical systems based on PLDTM

    图 9  交替停车泊位时间分配示意图

    Figure 9.  Schematic diagram of parking time allocation for alternate parking

    图 10  基于A*算法的停车场内部泊车诱导路径规划

    Figure 10.  Parking guidance path planning in the parking lot based on A* algorithm

    图 11  A*算法流程

    Figure 11.  A* algorithm flow chart

    表  1  停车场B2层模型参数

    Table  1.   Model parameters of parking lot B2 floor

    物体长/m宽/m
    泊位63
    车道6
    立柱(每组)61
    下载: 导出CSV

    表  2  路径规划参数统计表

    Table  2.   Statistical table of path planning parameters

    方案起始点坐标/m目标点坐标/m 路径代价/m 转弯代价
    方案1(8, 6)(84, 48)96.91 12
    方案2(8, 6)(84, 48)98.08 12
    下载: 导出CSV
  • [1] 夏义年, 黄迪. 全视频智慧停车场综合解决方案[J]. 现代建筑电气, 2014, 5(1): 53-55. doi: 10.16618/j.cnki.1674-8417.2014.01.002

    XIA Y N, HUANG D. Integrated solutions of full video intelligent parking lot[J]. Modern Architecture Electric, 2014, 5(1): 53-55(in Chinese). doi: 10.16618/j.cnki.1674-8417.2014.01.002
    [2] 陈绍红. 大型城市综合体智慧停车场解决方案[J]. 福建建材, 2015(7): 100-102.

    CHEN S H. Smart parking solution for large-scale urban complex[J]. Fujian Building Materials, 2015(7): 100-102(in Chinese).
    [3] 吴韶龙, 夏厚峰. 智能设备解决城市“停车难”[J]. 上海信息化, 2017(2): 60-63. doi: 10.3969/j.issn.1672-8424.2017.02.016

    WU S L, XIA H F. Intelligent devices solve the “parking difficulty” in cities[J]. Shanghai Informatization, 2017(2): 60-63(in Chinese). doi: 10.3969/j.issn.1672-8424.2017.02.016
    [4] 李军伟. 大型地下停车场综合管理系统的设计与研究[D]. 济南: 山东建筑大学, 2017: 27-39.

    LI J W. Design and research of integrated management system for large underground parking[D]. Jinan: Shandong Jianzhu University, 2017: 27-39 (in Chinese) .
    [5] AI H, WANG F. The design of the intelligent parking system for urban business districts[J]. Transactions of the Institute of Measurement and Control, 2018, 40(1): 210-221. doi: 10.1177/0142331216652215
    [6] 慕慧娟, 郑云林, 塔依尔·斯拉甫力. 智慧停车场在线计量云平台分析与设计研究[J]. 中国测试, 2021, 47(4): 124-129.

    MU H J, ZHENG Y L, TAYIER S. Research on analysis and design of intelligent parking lot online metering cloud platform[J]. China Measurement & Test, 2021, 47(4): 124-129(in Chinese).
    [7] TAO F, ZHANG M. Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2017, 5: 20418-20427. doi: 10.1109/ACCESS.2017.2756069
    [8] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. doi: 10.13196/j.cims.2018.01.001

    TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18(in Chinese). doi: 10.13196/j.cims.2018.01.001
    [9] GABOR T, BELZNER L, KIERMEIER M, et al. A simulation-based architecture for smart cyber-physical systems[C]//2016 IEEE International Conference on Autonomic Computing. Piscataway: IEEE Press, 2016: 374-379.
    [10] MARCULESCU R, BOGDAN P. Cyberphysical systems: Workload modeling and design optimization[J]. IEEE Design & Test of Computers, 2011, 28(4): 78-87.
    [11] 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611. doi: 10.13196/j.cims.2017.08.001

    TAO F, CHENG Y, CHENG J F, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611(in Chinese). doi: 10.13196/j.cims.2017.08.001
    [12] CAICEDO F, BLAZQUEZ C, MIRANDA P. Prediction of parking space availability in real time[J]. Expert Systems With Applications, 2012, 39(8): 7281-7290. doi: 10.1016/j.eswa.2012.01.091
    [13] KLAPPENECKER A, LEE H, WELCH J L. Finding available parking spaces made easy[J]. Ad Hoc Networks, 2014, 12: 243-249. doi: 10.1016/j.adhoc.2012.03.002
    [14] FRANK R J, DAVEY N, HUNT S P. Time series prediction and neural networks[J]. Journal of Intelligent and Robotic Systems, 2001, 31(1): 91-103.
    [15] ATHINEOS M, ELLIS D P W. Autoregressive modeling of temporal envelopes[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5237-5245. doi: 10.1109/TSP.2007.898783
    [16] LIU S X, GUAN H Z, YAN H, et al. Unoccupied parking space prediction of chaotic time series[C]//International Conference of Chinese Tran sportation Professionals 2010. Reston: American Society of Civil Engineers, 2010: 2122-2131.
    [17] JIA W K, ZHAO D A, SHEN T, et al. An optimized classification algorithm by BP neural network based on PLS and HCA[J]. Applied Intelligence, 2015, 43(1): 176-191. doi: 10.1007/s10489-014-0618-x
    [18] CHEN H P, TU X H, WANG Y, et al. Short-Term parking space prediction based on wavelet-ELM neural networks[J]. Journal of Jilin University(Science Edition), 2017, 55(2): 388-392.
    [19] YANG Z S, CHEN X D. Research on the estimation for effective parking space of the intelligentized parking guidance system[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3(4): 12-15.
    [20] YAN J N, MU L, WANG L Z, et al. Temporal convolutional networks for the advance prediction of ENSO[J]. Scientific Reports, 2020, 10: 8055. doi: 10.1038/s41598-020-65070-5
    [21] 姚恩建, 张正超, 张嘉霖, 等. 居住区共享泊位资源优化配置模型及算法[J]. 交通运输系统工程与信息, 2017, 17(2): 160-167. doi: 10.16097/j.cnki.1009-6744.2017.02.024

    YAO E J, ZHANG Z C, ZHANG J L, et al. A model and algorithm for optimization of the utilization of residential shared parking slots[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 160-167(in Chinese). doi: 10.16097/j.cnki.1009-6744.2017.02.024
    [22] 褚鸿锐. 智能停车场反向寻车设计及管理系统实现[D]. 哈尔滨: 哈尔滨理工大学, 2018: 26-29.

    CHU H R. Design of intelligent parking reverse car searching and implementation of management system[D]. Harbin: Harbin University of Science and Technology, 2018: 26-29(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  100
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-03-05
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答