留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发射场卫星试验鉴定流程控制网模型及分析

张淳 庄轲 于澎 闫金栋 刘一帆 常进

张淳,庄轲,于澎,等. 发射场卫星试验鉴定流程控制网模型及分析[J]. 北京航空航天大学学报,2023,49(8):1948-1955 doi: 10.13700/j.bh.1001-5965.2021.0628
引用本文: 张淳,庄轲,于澎,等. 发射场卫星试验鉴定流程控制网模型及分析[J]. 北京航空航天大学学报,2023,49(8):1948-1955 doi: 10.13700/j.bh.1001-5965.2021.0628
ZHANG C,ZHUANG K,YU P,et al. Process control net modelling and analyzing for satellite test and evaluation in launch site[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1948-1955 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0628
Citation: ZHANG C,ZHUANG K,YU P,et al. Process control net modelling and analyzing for satellite test and evaluation in launch site[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1948-1955 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0628

发射场卫星试验鉴定流程控制网模型及分析

doi: 10.13700/j.bh.1001-5965.2021.0628
详细信息
    通讯作者:

    E-mail:isermao@163.com

  • 中图分类号: V416

Process control net modelling and analyzing for satellite test and evaluation in launch site

More Information
  • 摘要:

    发射场卫星试验鉴定流程控制联合考虑试验鉴定过程模型和试验科目,实现对试验鉴定的流程控制。目前发射场卫星技术流程以文字和图片描述,在节点状态和约束迁移方面存在量化问题,无法构建形式化模型以嵌入自动化试验鉴定评估系统。以网模型为基础,构造发射场卫星试验鉴定流程控制网模型,并提出配套结构分析和性能分析方法,实现量化的可达性、作业不确定性和资源竞争性等分析内容,支持并行多星多任务的评估分析,从而支撑发射场卫星试验鉴定流程管理中试验鉴定方案设计及卫星流程模型优化设计等工作。

     

  • 图 1  发射场卫星试验鉴定流程控制网模型

    Figure 1.  Process control net model of satellite test and evaluation in launch site

    图 2  某4星数管分系统串行试验鉴定项目的分解

    Figure 2.  Detailed item of process control net model for four satellites

    表  1  发射场卫星流程控制模型状态示例

    Table  1.   States example of satellite process control net model in launch site

    过程业务内容状态
    发射场技术区测试卫星加电正常P4_1
    卫星遥测遥控正常P4_2
    供配电分系统试验完成P4_3
    数管分系统试验完成P4_4
    $\vdots$$\vdots$
    发射场太阳翼/天线
    安装及展开试验
    太阳翼/天线等
    展开架工装到位
    P5_1
    $\vdots$$\vdots$
    $\vdots$$\vdots$$\vdots$
    下载: 导出CSV

    表  2  发射场卫星流程控制模型变迁示例

    Table  2.   Transition example of satellite process control net model in launch site

    过程业务内容变迁平均作业时间/d
    发射场技术区测试供电检查T4_10.1
    遥测遥控检查T4_20.1
    供配电分系统试验T4_34
    数管分系统试验T4_44
    $\vdots$$\vdots$$\vdots$
    $\vdots$$\vdots$$\vdots$$\vdots$
    下载: 导出CSV

    表  3  结构分析初始状态

    Table  3.   Initial values for structure analysis

    序号变量
    1$\Delta {\boldsymbol{t} } = \left[ {0.2,0.2,2,3,1,2,2,4,1,0.5,1,1,0.5,2} \right]$
    2${\boldsymbol{M} }_{S{\text{,I} } }^{\left( 1 \right)} = \left[ {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \right]$
    3${\boldsymbol{M} }_{S{\text{,O} } }^{\left( 1 \right)} = \left[ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \right]$
    4${\boldsymbol{M} }_{T{\text{,I} } }^{\left( 1 \right)} = \left[ {0,0,0,0,0,0,0,0,0,0,0,0,0,0} \right]$
    5${\boldsymbol{M} }_{T{\text{,O} } }^{\left( 1 \right)} = \left[ {0,0,0,0,0,0,0,0,0,0,0,0,0,0} \right]$
    下载: 导出CSV

    表  4  变迁和状态激活记录

    Table  4.   Transition and state activation records

    迭代次数激活时间/d$ {\boldsymbol{M}}_{T{\text{,O}}}^{} $变迁激活$ {\boldsymbol{M}}_{S{\text{,I}}}^{} $状态激活
    10T4_1P3_1
    20.2T4_2P4_1
    30.4T4_3,T4_6,T4_7P4_2
    42.4T4_10P4_3,P4_5,P4_6
    52.9T4_4,T4_9,T4_11,T4_13
    63.4T4_5,T4_8P4_4,P4_9,P4_12
    74.4T4_12P4_7,P4_8
    85.4T4_14P4_14
    96.4P4_11,P4_15
    下载: 导出CSV

    表  5  性能分析初始状态

    Table  5.   Initial values for performance analysis

    序号变量
    1$\Delta { {\boldsymbol{t} }_{\text{E} } } = {\left[ {0.5,1,1,0.5,1,1,0.5,1,1,0.5,1,1} \right]^{\text{T} } }$
    2$\Delta { {\boldsymbol{t} }_{\text{S} } } = {\left[ {0.3,0.8,0.8,0.3,0.8,0.8,0.3,0.8,0.8,0.3,0.8,0.8} \right]^{\text{T} } }$
    3$\Delta { {\boldsymbol{t} }_{\text{L} } } = {\left[ {0.7,1.2,1.2,0.7,1.2,1.2,0.7,1.2,1.2,0.7,1.2,1.2} \right]^{\text{T} } }$
    4$\Delta {\boldsymbol{s} } = {\left[ {3,4} \right]^{\text{T} } }$
    5${\boldsymbol{r} } = \left[ \begin{gathered} 1,2,2,1,2,2,1,2,2,1,2,2 \\ 1,2,1,1,2,1,1,2,1,1,2,1 \\ \end{gathered} \right]$
    6$ {\boldsymbol{M}}_{S{\text{,I}}}^{\left( 1 \right)} = {\left[ {1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0} \right]^{\text{T}}} $
    7${\boldsymbol{M} }_{S{\text{,O} } }^{\left( 1 \right)} = {\left[ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \right]^{\text{T} } }$
    8${\boldsymbol{M} }_{T{\text{,I} } }^{\left( 1 \right)} = {\left[ {0,0,0,0,0,0,0,0,0,0,0,0} \right]^{\text{T} } }$
    9${{\boldsymbol{M}}}_{T\text{,O} }^{\left(1\right)}={\left[0,0,0,0,0,0,0,0,0,0,0,0\right]}^{\text{T} }$
    下载: 导出CSV

    表  6  变迁激活记录

    Table  6.   Transition activation records

    迭代次数激活时间/天变迁激活
    ${\boldsymbol{M} }_{T{\text{,I} } }^{}$${\boldsymbol{M} }_{T{{,{\rm{I}}\_{\rm{X}}} } }$${\boldsymbol{M} }_{T{\text{,O} } }^{}$
    10S1_T4_4_1
    S2_T4_4_1
    S3_T4_4_1
    S4_T4_4_1
    S1_T4_4_1
    S2_T4_4_1
    S3_T4_4_1
    S1_T4_4_1
    S2_T4_4_1
    S3_T4_4_1
    20.5S1_T4_4_2
    S2_T4_4_2
    S3_T4_4_2
    S4_T4_4_1
    S1_T4_4_2
    S4_T4_4_1
    31S4_T4_4_2 S1_T4_4_2
    41.5S1_T4_4_3S1_T4_4_3S1_T4_4_3
    52.5 S2_T4_4_2S2_T4_4_2
    63.5S2_T4_4_3S2_T4_4_3S2_T4_4_3
    74.5 S3_T4_4_2S3_T4_4_2
    85.5S3_T4_4_3S3_T4_4_3S3_T4_4_3
    96.5 S4_T4_4_2S4_T4_4_2
    107.5S4_T4_4_3S4_T4_4_3S4_T4_4_3
    下载: 导出CSV

    表  7  作业时间

    Table  7.   Work time d

    平均激活
    时间
    最早开始
    时间
    最晚开始
    时间
    冗余激活
    时间
    0000
    0.50.30.70.566 7
    10.61.41.133 3
    1.51.11.91.633 3
    2.51.93.12.7
    3.52.74.33.766 7
    4.53.55.54.833 3
    5.54.36.75.9
    6.55.17.96.966 7
    7.55.99.18.033 3
    8.56.710.39.1
    下载: 导出CSV
  • [1] 郭凯, 胡旖旎. 航天装备试验鉴定案例分析: 天基红外系统[J]. 航天返回与遥感, 2021, 42(2): 79-84. doi: 10.3969/j.issn.1009-8518.2021.02.009

    GUO K, HU Y N. Case analysis of space equipment test and evaluation—a space-based infrared system[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(2): 79-84(in Chinese). doi: 10.3969/j.issn.1009-8518.2021.02.009
    [2] 周思卓, 刘宝平, 彭洪江, 等. 美军航天装备试验鉴定体系发展现状研究[J]. 装备学院学报, 2016, 27(6): 65-68.

    ZHOU S Z, LIU B P, PENG H J, et al. Research on development of U.S. army space system test and evaluation[J]. Journal of Equipment Academy, 2016, 27(6): 65-68(in Chinese).
    [3] 姜盛鑫, 韩天龙, 陆宏伟. 美军航天装备 COTS 试验鉴定工作透视及思考[J]. 航天器环境工程, 2021, 38(5): 599-603.

    JIANG S X, HAN T L, LU H W. Critical analysis of test and evaluation for COTS products used as USSF space equipment[J]. Spacecraft Environment Engineering, 2021, 38(5): 599-603(in Chinese).
    [4] 杨俊岭, 曹金霞, 梁晋平, 等. 美军空间系统在轨试验问题综合研究[J]. 飞行器测控学报, 2011, 30(4): 1-5.

    YANG J L, CAO J X, LIANG J P, et al. An investigation into in-orbit test of US military space systems[J]. Journal of Spacecraft TT&C Technology, 2011, 30(4): 1-5(in Chinese).
    [5] 吴凌九, 胡亚军, 陈谨飞, 等. 卫星平台试验鉴定实践现状与思考[J]. 国防科技, 2022, 43(1): 32-37.

    WU L J, HU Y J, CHEN J F, et al. Current situation of the implementation of satellite platform test and evaluation[J]. National Defense Technology, 2022, 43(1): 32-37(in Chinese).
    [6] 何洋, 林屹立, 周思卓. 美军航天装备作战试验鉴定策略研究及案例分析[J]. 航天器环境工程, 2020, 37(4): 408-413. doi: 10.12126/see.2020.04.015

    HE Y, LIN Y L, ZHOU S Z. Analysis of operational test and case evaluation of USAF space equipment[J]. Spacecraft Environment Engineering, 2020, 37(4): 408-413(in Chinese). doi: 10.12126/see.2020.04.015
    [7] KLEPPER J, KNAPKE R, SIRBAUGH J, et al. Computational modeling and simulation applications to support integrated test and evaluation (IT&E) at AEDC[C]//Proceedings of the 2018 Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2018.
    [8] PARKINSON D, VANLERBERGHE W M, RAHMAN S A. JANNAF test and evaluation guideline for liquid rocket engines: Status and application[C]//Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017.
    [9] NOMAGUCHI Y, SAITO M, FUJITA K. Multi-domain DSM method for design process management of complex system[J]. Journal of Industrial and Production Engineering, 2015, 32(7): 465-472. doi: 10.1080/21681015.2015.1083487
    [10] SON M J, KIM T W. Implementation of an executable business process management model for the ship hull production design process[J]. Journal of Marine Science and Technology, 2014, 19(2): 170-184. doi: 10.1007/s00773-013-0238-x
    [11] 熊志勇, 刘梦玉, 庞婉婷. 基于Petri网的工业设计过程管理工作流建模研究[J]. 图学学报, 2018, 39(4): 611-615.

    XIONG Z Y, LIU M Y, PANG W T. Workflow modeling of industrial design process management based on petri net[J]. Journal of Graphics, 2018, 39(4): 611-615(in Chinese).
    [12] 梅磊, 刘鸿飞, 董文通. 基于测试过程管理的航天软件质量评价[J]. 西华大学学报(自然科学版), 2019, 38(6): 67-72.

    MEI L, LIU H F, DONG W T. Aerospace software quality evaluation based on test process management[J]. Journal of Xihua University (Natural Science Edition), 2019, 38(6): 67-72(in Chinese).
    [13] 袁崇义. Petri网原理与应用[M]. 北京: 电子工业出版社, 2005: 58-62.

    YUAN C Y. Principle and application of Petri net[M]. Beijing: Publishing House of Electronics Industry, 2005: 58-62 (in Chinese).
    [14] YU W Y, JIA M H, LIU C, et al. Task preemption based on petri nets[J]. IEEE Access, 2020, 8: 11512-11519. doi: 10.1109/ACCESS.2020.2964382
    [15] IDEL M Y, NAIT-SIDI-MOH A, CHAKIR EL A E, et al. Petri nets conflicts resolution for performance evaluation and control of urban bus networks: A (max, +)-based approach[J]. Transportmetrica A:Transport Science, 2020, 16(2): 164-193. doi: 10.1080/23249935.2018.1527864
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  44
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2022-01-14
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答