留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脊背特征的发动机低转速特性扩展方法

王佳美 郭迎清 于华锋

王佳美,郭迎清,于华锋. 基于脊背特征的发动机低转速特性扩展方法[J]. 北京航空航天大学学报,2023,49(9):2351-2360 doi: 10.13700/j.bh.1001-5965.2021.0634
引用本文: 王佳美,郭迎清,于华锋. 基于脊背特征的发动机低转速特性扩展方法[J]. 北京航空航天大学学报,2023,49(9):2351-2360 doi: 10.13700/j.bh.1001-5965.2021.0634
WANG J M,GUO Y Q,YU H F. Extension method of engine low speed characteristics based on backbone features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2351-2360 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0634
Citation: WANG J M,GUO Y Q,YU H F. Extension method of engine low speed characteristics based on backbone features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2351-2360 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0634

基于脊背特征的发动机低转速特性扩展方法

doi: 10.13700/j.bh.1001-5965.2021.0634
基金项目: 国家科技重大专项基金(J2019-Ⅴ-0003)
详细信息
    通讯作者:

    E-mail:yqguo@nwpu.edu.cn

  • 中图分类号: V235.13;TB553

Extension method of engine low speed characteristics based on backbone features

Funds: National Science and Technology Major Project of China (J2019-Ⅴ-0003)
More Information
  • 摘要:

    旋转部件在高空低转速时,其工作状态受来流的吹动作用可能会发生变化,此时压气机处在特殊的“搅拌机”或“涡轮”工作状态,使得发动机的动态计算中效率插值出现不连续的问题。为解决此问题,采用美国国家航空航天局(NASA)和通用电气公司(GE)联合开发的针对旋转部件特性转化的脊背特征方法,通过分析低转速下旋转部件脊背特征及非脊背特征的变化趋势,提出基于脊背特征的旋转部件低转速范围特性的扩展方法,并有效规避了效率特性在低转速下插值的失效。以某型军用涡扇发动机为例,计算其处于不同飞行条件下的发动机风车工作状况,结果表明:所提方法能够反映出低转速下压气机压比小于1的特殊工作状态,且不同飞行条件下的风车特性计算合理。

     

  • 图 1  压气机基元级转子速度三角形

    Figure 1.  Velocity triangle of compressor stage

    图 2  压气机脊背点的位置

    Figure 2.  The position of backbone point of compressor

    图 3  压气机的脊背点特性

    Figure 3.  The backbone characteristics of compressor

    图 4  压气机的非脊背点特性

    Figure 4.  The off-backbone characteristics of compressor

    图 5  涡轮的基元级转子速度三角形

    Figure 5.  Velocity triangle of turbine stage

    图 6  涡轮的脊背点特性

    Figure 6.  The backbone characteristics of turbine

    图 7  涡轮的非脊背点特性

    Figure 7.  The off-backbone characteristics of turbine

    图 8  涡轮堵塞点换算流量的变化趋势

    Figure 8.  The trend of maximum value of turbine flow function

    图 9  风车减速时发动机的性能参数响应

    Figure 9.  The response of engine performance parameter during deceleration of windmilling

    图 10  不同高度及马赫数下的风车特性

    Figure 10.  Windmilling characteristics at different altitudes and Mach numbers

  • [1] BRAIG W, SCHULTE H, RIEGLER C. Comparative analysis of the windmilling performance of turbojet and tbrbofan engines[J]. Journal of Propulsion and Power, 1999, 15(2): 326-333. doi: 10.2514/2.5430
    [2] WALKER C L, FENN D B. Investigation of power extraction characteristics and braking requirements of a windmilling turbojet engine[J]. Australian Veterinary Journal, 1952, 48(5): 258-62.
    [3] BINDER N, COURTY-AUDREN S K, DUPLAA S, et al. Theoretical analysis of the aerodynamics of low-speed fans in free and load-controlled windmilling operation[J]. Journal of Turbomachinery, 2015, 137(10): 101001. doi: 10.1115/1.4030308
    [4] KURZKE J. How to get component maps for aircraft gas turbine performance calculations[C]//ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. Birmingham: American Society of Mechanical Engineers, 1996.
    [5] XU S Y, ZHU Z L, LIU Z D, et al. Research on the starting characteristics and control law of two spool turbofan engine[J]. Energy Procedia, 2019, 158: 1765-1771. doi: 10.1016/j.egypro.2019.01.418
    [6] 王松岭, 张学镭, 陈海平, 等. 基于相似定律外推压气机通用特性曲线的方法[J]. 动力工程, 2007, 27(2): 169-173.

    WANG S L, ZHANG X L, CHEN H P, et al. Method based on similarity laws for extrapolating generalized performance curves of compressors[J]. Journal of Power Engineering, 2007, 27(2): 169-173(in Chinese).
    [7] GAUDET S R, DONALD GAUTHIER J E. A simple sub-idle component map extrapolation method[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. Montreal: ASME, 2009: 29-37.
    [8] JONES G, CURNOCK B. Compressor characteristics in gas turbine performance modelling: 2001-GT-0384 [R]. New Orleans : ASME , 2001.
    [9] 王占学, 王永杰, 乔渭阳, 等. 涡扇发动机低转速部件特性扩展和风车状态性能模拟[J]. 推进技术, 2006, 27(2): 146-149. doi: 10.3321/j.issn:1001-4055.2006.02.012

    WANG Z X, WANG Y J, QIAO W Y, et al. Extrapolating component maps into the low speed and simulation of windmilling performance of turbofan engine[J]. Journal of Propulsion Technology, 2006, 27(2): 146-149(in Chinese). doi: 10.3321/j.issn:1001-4055.2006.02.012
    [10] HOWARD J. Sub-idle modelling of gas turbines: Altitude relight and windmilling[D]. Cranfield : Cranfield University, 2007.
    [11] ZACHOS P K, ASLANIDOU I, PACHIDIS V, et al. A sub-idle compressor characteristic generation method with enhanced physical background[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(8): 1.
    [12] GOTO T, KATO D, OHTA Y, et al. Unsteady flow structure in an axial compressor at windmill condition[C]//Proceedings of ASME Turbo Expo 2014. Düsseldorf: ASME, 2014.
    [13] ZACHOS P K, PENGUE F, PACHIDIS V, et al. Flowfield investigation of a compressor cascade at high incidence—part 2: Numerical analysis[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando : ASME, 2010: 355-362.
    [14] 饶高, 苏三买, 翟向博. 指数外推法和支持向量机相结合的压气机特性扩展方法[J]. 航空动力学报, 2017, 32(3): 749-755. doi: 10.13224/j.cnki.jasp.2017.03.029

    RAO G, SU S M, ZHAI X B. Method of compressor characteristic extension combining exponent extrapolation method with support vector machine[J]. Journal of Aerospace Power, 2017, 32(3): 749-755(in Chinese). doi: 10.13224/j.cnki.jasp.2017.03.029
    [15] CONVERSE G L, GIFFIN R. Extended parametric representation of compressor fans and turbines. Volume 1: CMGEN user’s manual: NASA-CR-174645 [R]. Washington D. C. : NASA, 1984.
    [16] RIEGLER C, BAUER M, KURZKE J. Some aspects of modelling compressor behavior in gas turbine performance calculations[C]// ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich: ASME, 2000.
    [17] 马文通, 苏明, 余南华. 变几何多级轴流式压气机特性估算[J]. 中国电机工程学报, 2008, 28(11): 72-76. doi: 10.3321/j.issn:0258-8013.2008.11.013

    MA W T, SU M, YU N H. Characteristic estimation method of variable geometry multistage axial-flow compressors[J]. Proceedings of the CSEE, 2008, 28(11): 72-76(in Chinese). doi: 10.3321/j.issn:0258-8013.2008.11.013
    [18] SETHI V, DOULGERIS G, PILIDIS P, et al. The map fitting tool methodology: Gas turbine compressor off-design performance modeling[J]. Journal of Turbomachinery, 2013, 135(6): 061010. doi: 10.1115/1.4023903
    [19] DIXON S L, HALL C A . Fluid mechanics and thermodynamics of turbomachinery[M]. Oxford : Pergamon Press, 1998.
    [20] FLAGG E E. Analytical procedure and computer program for determining the off-design performance of axial flow turbines: NASA-CR-710 [R]. Washington D. C. : NASA, 1967.
    [21] CONVERSE G L. Extended parametric representation of compressor fans and turbines volume Ⅱ- PART user’s manual: NASA-CR-174646 [R]. Washington D. C. : NASA, 1984.
    [22] 施洋. 民用大涵道比涡扇发动机全状态性能模型研究[D]. 西安: 西北工业大学, 2017.

    SHI Y. A research on full states performance model for civil high bypass turbofan engine[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
    [23] 高扬, 田晓平, 李秋锋. 基于换算扭矩特性的混排涡扇发动机风车状态性能模拟[J]. 现代机械, 2017(6): 10-13. doi: 10.13667/j.cnki.52-1046/th.2017.06.003

    GAO Y, TIAN X P, LI Q F. Simulation of windmilling performance for mixed flow turbofan engine based on converted torque characteristics[J]. Modern Machinery, 2017(6): 10-13(in Chinese). doi: 10.13667/j.cnki.52-1046/th.2017.06.003
    [24] PRASAD D, LORD W K. Internal losses and flow behavior of a turbofan stage at windmill[J]. Journal of Turbomachinery, 2010, 132(3): 1.
  • 加载中
图(10)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  31
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 录用日期:  2022-01-14
  • 网络出版日期:  2022-02-21
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答