留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨音涡轮转子叶尖间隙内流动分析与建模

轩笠铭 邹正平 曾飞

轩笠铭,邹正平,曾飞. 跨音涡轮转子叶尖间隙内流动分析与建模[J]. 北京航空航天大学学报,2023,49(9):2374-2384 doi: 10.13700/j.bh.1001-5965.2021.0635
引用本文: 轩笠铭,邹正平,曾飞. 跨音涡轮转子叶尖间隙内流动分析与建模[J]. 北京航空航天大学学报,2023,49(9):2374-2384 doi: 10.13700/j.bh.1001-5965.2021.0635
XUAN L M,ZOU Z P,ZENG F. Analyzing and modeling flow in tip clearance of transonic turbine rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2374-2384 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0635
Citation: XUAN L M,ZOU Z P,ZENG F. Analyzing and modeling flow in tip clearance of transonic turbine rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2374-2384 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0635

跨音涡轮转子叶尖间隙内流动分析与建模

doi: 10.13700/j.bh.1001-5965.2021.0635
基金项目: 国家自然科学基金(51676005)
详细信息
    通讯作者:

    E-mail:zouzhengping@buaa.edu.cn

  • 中图分类号: V231.3

Analyzing and modeling flow in tip clearance of transonic turbine rotor

Funds: National Natural Science Foundation of China (51676005)
More Information
  • 摘要:

    为明确跨音涡轮叶尖泄漏流动机理,进一步提升涡轮效率,对跨音条件下叶顶喷气对平叶尖及凹槽叶尖性能的影响进行研究,并探讨跨音条件下平叶尖及凹槽叶尖间隙内部的流动状态。结果表明:跨音条件下,叶顶喷气可以增加平叶尖叶栅的气动效率,而刮削涡仍是凹槽内的主控流动结构;喷气流量的增加对平叶尖的总泄漏流量影响有限,但会增加凹槽叶尖的总泄漏流量。在更高负荷情况下,平叶尖间隙内呈跨音速流动特征,具体状态与叶片负荷、叶片厚度有关;凹槽叶尖条件下,泄漏流动在吸力侧肋条上方快速膨胀至超声速状态。基于此,建立可用于跨音条件下的泄漏流量预测模型。

     

  • 图 1  平叶尖和凹槽叶尖的几何示意图及参数

    Figure 1.  Geometry and parameters of flat tip and squealer tip

    图 2  网格示意图

    Figure 2.  Sketch figure of mesh

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  仿真与实验结果

    Figure 4.  CFD and experiment results

    图 5  不同条件下叶栅的气动效率

    Figure 5.  Aerodynamic performance of cascade under different conditions

    图 6  平叶尖各截面马赫数

    Figure 6.  Mach number contours of each section of flat tip

    图 7  喷气条件下平叶尖各截面压力系数及吸力侧出口马赫数

    Figure 7.  Pressure coefficient contours of each section of flat tip and Mach number contour of tip clearance outlet with tip injection

    图 8  凹槽叶尖各截面马赫数

    Figure 8.  Mach number contours of each section of squealer tip

    图 9  泄漏流量沿轴向的分布

    Figure 9.  Axial wise distribution of leakage flow

    图 10  平叶尖流向82.5%~87.5%位置无量纲泄漏流量随孔4吹风比变化

    Figure 10.  Variation of normalized leakage flow at 82.5%−87.5% posisiton along flat tip with hole 4 blowing ratio

    图 11  凹槽叶尖流向82.5%~87.5%位置无量纲泄漏流量随孔4吹风比变化

    Figure 11.  Variation of normalized leakage flow at 82.5%−87.5% posisiton along squealer tip with hole 4 blowing ratio

    图 12  叶栅气动效率随出口马赫数变化趋势

    Figure 12.  Variation of cascade efficiency with outlet Mach number

    图 13  平叶尖喷气条件下间隙各截面马赫数

    Figure 13.  Mach number contours of each section of flat tip with tip injection

    图 14  平叶尖条件间隙内密度梯度

    Figure 14.  Density gradient contours of each section of flat tip

    图 15  平叶尖各截面泄漏流流动示意图

    Figure 15.  Flow state diagram at each section of flat tip

    图 16  平叶尖截面3喷气条件下泄漏流流动示意图

    Figure 16.  Flow state diagram in section 3 under flat tip jet condition

    图 17  凹槽叶尖喷气条件下间隙各截面马赫数分布(出口Ma=1.1)

    Figure 17.  Mach number contours of each section of squealer tip with tip injection (Outlet Ma=1.1)

    图 18  凹槽叶尖喷气条件下裁面3流动示意图

    Figure 18.  Flow state diagram in section 3 with jet of squealer tip

    图 19  泄漏流动沿轴向分布

    Figure 19.  Axial wise leakage axial distribution

    图 20  本文模型预测与数值模拟计算结果

    Figure 20.  Proposed model prediction and numerical simulation calculation results

    表  1  网格参数

    Table  1.   Grid parameters

    网格编号间隙径向网格数量网格总数/106
    网格192.51
    网格2152.67
    网格3212.84
    网格4262.98
    网格5313.14
    下载: 导出CSV
  • [1] DENTON J D. The 1993 IGTI scholar lecture: Loss mechanisms in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. doi: 10.1115/1.2929299
    [2] HAN J C. Fundamental gas turbine heat transfer[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021007. doi: 10.1115/1.4023826
    [3] ZOU Z P, WANG S T, LIU H X, et al. Axial turbine aerodynamics for aero-engines[M]. Berlin: Springer, 2018.
    [4] RAINS D A. Tip clearance flows in axial flow compressors and pumps[D]. Pasadena: California Institute of Technology, 1954.
    [5] BINDON J P. The measurement and formation of tip clearance loss[J]. Journal of Turbomachinery, 1989, 111(3): 257-263. doi: 10.1115/1.3262264
    [6] YARAS M I, SJOLANDER S A. Prediction of tip-leakage losses in axial turbines[C]//Proceedings of ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. Brussels: International Gas Turbine Institute , 2015.
    [7] GAO J, ZHENG Q, XU T B, et al. Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines[J]. Energy, 2015, 91: 255-263. doi: 10.1016/j.energy.2015.08.065
    [8] HUANG A. Loss mechanisms in turbine tip clearance[D]. Cambridge : Massachusetts Institute of Technology, 2011.
    [9] VIRDI A S, ZHANG Q, HE L, et al. Aerothermal performance of shroudless turbine blade tips with relative casing movement effects[J]. Journal of Propulsion and Power, 2015, 31(2): 527-536. doi: 10.2514/1.B35331
    [10] BUNKER R S. Axial turbine blade tips: Function, design, and durability[J]. Journal of Propulsion and Power, 2006, 22(2): 271-285. doi: 10.2514/1.11818
    [11] 邹正平, 姚李超, 轩笠铭, 等. 涡轮转子凹槽叶尖泄漏流动气动热力特征[J]. 推进技术, 2020, 41(9): 1975-1987.

    ZOU Z P, YAO L C, XUAN L M, et al. Aero-thermodynamic characteristics of tip leakage flow in turbine rotor with squealer tip[J]. Journal of Propulsion Technology, 2020, 41(9): 1975-1987(in Chinese).
    [12] ZOU Z P, SHAO F, LI Y R, et al. Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance[J]. Energy, 2017, 138: 167-184. doi: 10.1016/j.energy.2017.07.047
    [13] 杜金霖, 邹正平, 黄霖, 等. 计及机匣相对运动的涡轮叶片叶顶凹槽流动研究[J]. 实验流体力学, 2021, 35(2): 22-35. doi: 10.11729/syltlx20200073

    DU J L, ZOU Z P, HUANG L, et al. Experimental and numerical study of squealer tip flow field considering relative casing motion[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 22-35(in Chinese). doi: 10.11729/syltlx20200073
    [14] KRISHNABABU S K, NEWTON P J, DAWES W N, et al. Aerothermal investigations of tip leakage flow in axial flow turbines—part I: Effect of tip geometry and tip clearance gap[J]. Journal of Turbomachinery, 2009, 131(1): 011006. doi: 10.1115/1.2950068
    [15] KEGALJ M, SCHMID G, WARTZEK F, et al. Experimental and numerical investigation of tip leakage flow in a 1 1/2 stage turbine rig comparing flat and cavity-squealer tip geometries[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen: International Gas Turbine Institute, 2012.
    [16] MOORE J, MOORE J G, HENRY G S, et al. Flow and heat transfer in turbine tip gaps[J]. Journal of Turbomachinery, 1989, 111(3): 301-309. doi: 10.1115/1.3262269
    [17] JIANG S J, LI Z G, LI J, et al. Numerical investigations on the heat transfer performance of transonic squealer tip with different film cooling layouts[C]//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. [S. l. ] : International Gas Turbine Institute , 2021.
    [18] WANG T Y, XUAN Y M, HAN X S. The effects of tip gap variation on transonic turbine blade tip leakage flow based on VLES approach[J]. Aerospace Science and Technology, 2021, 111: 106542. doi: 10.1016/j.ast.2021.106542
    [19] WHEELER A P S, ATKINS N R, HE L. Turbine blade tip heat transfer in low speed and high speed flows[J]. Journal of Turbomachinery, 2011, 133(4): 041025. doi: 10.1115/1.4002424
    [20] MOORE J, ELWARD K M. Shock formation in overexpanded tip leakage flow[J]. Journal of Turbomachinery, 1993, 115(3): 392-399. doi: 10.1115/1.2929266
    [21] ARISI A, XUE S, NG W F, et al. Numerical investigation of aerothermal characteristics of the blade tip and near-tip regions of a transonic turbine blade[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf : International Gas Turbine Institute , 2014.
    [22] WHEELER A P S, SALEH Z. Effect of cooling injection on transonic tip flows[J]. Journal of Propulsion and Power, 2013, 29(6): 1374-1381. doi: 10.2514/1.B34657
    [23] DUAN P H, HE L. Optimization of turbine cascade squealer tip cooling design by combining shaping and flow injection[J]. Journal of Turbomachinery, 2021, 143(11): 111007. doi: 10.1115/1.4051204
    [24] MA H, ZHANG Q, HE L, et al. Cooling injection effect on a transonic squealer tip—part II: Analysis of aerothermal interaction physics[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(5): 052507. doi: 10.1115/1.4035200
    [25] WANG Y B, SONG Y P, YU J Y, et al. Effect of cooling injection on the leakage flow of a turbine cascade with honeycomb tip[J]. Applied Thermal Engineering, 2018, 133: 690-703. doi: 10.1016/j.applthermaleng.2018.01.090
    [26] ZHOU Z H, CHEN S W, LI W H, et al. Thermal performance of blade tip and casing coolant injection on a turbine blade with cavity and winglet-cavity tip[J]. International Journal of Heat and Mass Transfer, 2019, 130: 585-602. doi: 10.1016/j.ijheatmasstransfer.2018.10.130
    [27] 胡建军, 张铎, 张香兰, 等. 一种复合方法抑制叶尖泄漏的试验及模拟研究[J]. 北京航空航天大学学报, 2018, 44(11): 2283-2291.

    HU J J, ZHANG D, ZHANG X L, et al. Experiment and simulation study on tip leakage suppression by a compound method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2283-2291(in Chinese).
    [28] 王维杰, 卢少鹏, 马海腾, 等. 高压涡轮尾切凹槽叶尖冷却换热特性[J]. 航空动力学报, 2019, 34(10): 2131-2139.

    WANG W J, LU S P, MA H T, et al. Cooling and heat transfer characteristics of high-pressure turbine blade with cutback squealer tip[J]. Journal of Aerospace Power, 2019, 34(10): 2131-2139(in Chinese).
    [29] 杨蓓洁, 谭晓茗, 单勇, 等. 肋条结构对气膜冷却凹槽叶尖流动换热的影响[J]. 航空动力学报, 2021, 36(7): 1462-1471.

    YANG B J, TAN X M, SHAN Y, et al. Effects of rib structure on flow and heat transfer characteristics of film cooling rotor blade with squealer tip[J]. Journal of Aerospace Power, 2021, 36(7): 1462-1471(in Chinese).
    [30] GAO J, ZHENG Q, ZHANG Z Y, et al. Aero-thermal performance improvements of unshrouded turbines through management of tip leakage and injection flows[J]. Energy, 2014, 69: 648-660. doi: 10.1016/j.energy.2014.03.060
    [31] ZHOU C, HODSON H. The tip leakage flow of an unshrouded high pressure turbine blade with tip cooling[J]. Journal of Turbomachinery, 2011, 133(4): 041028. doi: 10.1115/1.4001174
    [32] NICHOLSON J H, FOREST A E, OLDFIELD M L G, et al. Heat transfer optimised turbine rotor blades: An experimental study using transient techniques[C]//Proceedings of ASME 1982 International Gas Turbine Conference and Exhibit. London: International Gas Turbine Institute, 2015.
    [33] ZENG F, DU J L, HUANG L, et al. An experimental method for squealer tip flow field considering relative casing motion[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1942-1952. doi: 10.1016/j.cja.2020.03.002
    [34] YOUNG J B, HORLOCK J H. Defining the efficiency of a cooled turbine[J]. Journal of Turbomachinery, 2006, 128(4): 658-667. doi: 10.1115/1.2218890
    [35] SCHLICHTING H. Boundary-layer theory[M]. 7th ed. New York: McGraw-Hill, 1979.
    [36] MUNSON B R, YOUNG D F, OKIISHI T H. Fundamentals of fluid mechanics[M]. New York: Wiley, 1990.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  52
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答