留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TRL的非标准接口机载射频线缆测试方法

石旭东 李瑞蒲 赵宏旭 张浩天

石旭东,李瑞蒲,赵宏旭,等. 基于TRL的非标准接口机载射频线缆测试方法[J]. 北京航空航天大学学报,2023,49(9):2207-2217 doi: 10.13700/j.bh.1001-5965.2021.0645
引用本文: 石旭东,李瑞蒲,赵宏旭,等. 基于TRL的非标准接口机载射频线缆测试方法[J]. 北京航空航天大学学报,2023,49(9):2207-2217 doi: 10.13700/j.bh.1001-5965.2021.0645
SHI X D,LI R P,ZHAO H X,et al. Non-standard interface aviation RF cable test method based on TRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2207-2217 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0645
Citation: SHI X D,LI R P,ZHAO H X,et al. Non-standard interface aviation RF cable test method based on TRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2207-2217 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0645

基于TRL的非标准接口机载射频线缆测试方法

doi: 10.13700/j.bh.1001-5965.2021.0645
基金项目: 国家自然科学基金(51377161)
详细信息
    通讯作者:

    E-mail:zhx2581@163.com

  • 中图分类号: V260;TM931

Non-standard interface aviation RF cable test method based on TRL

Funds: National Natural Science Foundation of China (51377161)
More Information
  • 摘要:

    机载射频(RF)线缆是传输信号的主要介质,其回波损耗等性能参数影响飞机通导系统的工作,目前存在多种非标准接口线缆,需采用精密的转接引线,但其对阻抗、传输损耗等参数要求较高,且易发生性能衰减,导致测试结果产生较大误差。因此,针对应用精密转接引线进行测试时存在的问题,提出了基于TRL的非标准接口机载射频线缆测试方法。利用级联传输参数矩阵的方法对转接引线与待测线缆进行建模;利用改进的TRL校准方法对转接引线的参数进行去嵌入获取待测线缆的散射参数,进而评估机载射频线缆的性能。应用所提方法进行机载射频线缆测试实验,结果表明:除个别谐振点外,回波损耗最大误差约为1 dB,传输损耗最大误差约为0.2 dB,验证了所提方法的可行性和有效性。

     

  • 图 1  非标准接口射频线缆测试示意图

    Figure 1.  Diagram of non-standard interface RF cable test

    图 2  非标准接口射频线缆测试级联模型

    Figure 2.  Cascade model of non-standard interface RF cable test

    图 3  3种校准件的连接框图及对应的信号流图

    Figure 3.  Connection diagram of three calibration kits and corresponding signal flow diagram

    图 4  改进的TRL校准流程

    Figure 4.  Flow diagram of improved TRL calibration

    图 5  虚拟传输线插入前后延迟校准件与直通校准件传输损耗相位差

    Figure 5.  Transmission loss phase-difference of line standard and through standard before and after virtual transmission line insertion

    图 6  测试频率范围宽时虚拟传输线插入前后延迟校准件与直通校准件传输损耗相位差

    Figure 6.  Transmission loss phase-difference of line standard and through standard before and after virtual transmission line insertion under wide range of test frequencies

    图 7  转接引线对称时非标准接口线缆测试级联模型

    Figure 7.  Cascade model of non-standard interface cable test under symmetrical test leads

    图 8  仿真模型

    Figure 8.  Simulation model

    图 9  虚拟传输线插入前后延迟校准件与直通校准件传输损耗相位差仿真结果

    Figure 9.  Simulation results of transmission loss phase-difference of line standard and through standard before and after virtual transmission line insertion

    图 10  直通校准件回波损耗驻波比的仿真结果

    Figure 10.  Simulation results of voltage standing wave ratio of through standard

    图 11  去嵌入前后结果对比

    Figure 11.  Comparison of results before and after de-embedding

    图 12  TRL校准与TL校准去嵌入结果对比

    Figure 12.  Comparison of TRL and TL calibrations de-embedding

    图 13  实验平台

    Figure 13.  Experimental platform

    图 14  4种测量件

    Figure 14.  Four measurement components

    图 15  延迟校准件与直通校准件传输损耗相位差

    Figure 15.  Transmission loss phase-difference of line standard and through standard

    图 16  直通校准件回波损耗驻波比的实验结果

    Figure 16.  Experimental result of voltage standing wave ratio of through standard

    图 17  转接引线特征阻抗

    Figure 17.  Characteristic impedance of test lead

    图 18  TRL校准去嵌入结果

    Figure 18.  Results of TRL calibration de-embedding

    图 19  TL校准去嵌入结果

    Figure 19.  Results of TL calibration de-embedding

  • [1] 邹维明, 刘蕾, 姜睿智, 等. 非标准接口射频电缆性能测试细节控制浅谈[J]. 计测技术, 2017, 37(S1): 269-271.

    ZOU W M, LIU L, JIANG R Z, et al. Talking about the detailed control of the performance test of the non-standard interface RF cable[J]. Measurement Technology, 2017, 37(S1): 269-271(in Chinese).
    [2] 高维胜. 浅谈宇航级电连接器射频性能测试技术[J]. 机电元件, 2018, 38(2): 38-43.

    GAO W S. Talking about the testing technology of RF performance of aerospace electrical connector[J]. Electromechanical Components, 2018, 38(2): 38-43(in Chinese).
    [3] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 射频射频电缆组件第1部分: 总规范 一般要求和试验方法: GB/T 17738.1—2013[S]. 北京: 中国标准出版社, 2014: 5-9.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Radio frequency and coaxial cable assemblies. Part 1: Generic specification-General requirements and test methods: GB/T 17738.1—2013[S]. Beijing: Standards Press of China, 2014: 5-9( in Chinese).
    [4] IEC. Radio frequency and coaxial cable assemblies. Part 1: Generic specification-General requirements and test methods: IEC 60966-1[S]. Geneva: IEC, 2019.
    [5] BIANCO B, PARODI M, RIDELLA S, et al. Launcher and microstrip characterization[J]. IEEE Transactions on Instrumentation and Measurement, 1976, IM-25(4): 320-323. doi: 10.1109/TIM.1976.6312235
    [6] FRANZEN N R, SPECIALE R A . A new procedure for system calibration and error removal in automated S-parameter measurements[C]//Proceedings of the 5th European Microwave Conference. Piscataway: IEEE Press, 1975.
    [7] ENGEN G F, HOER C A. Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer[J]. IEEE Transactions on Microwave Theory and Techniques, 1979, 27(12): 987-993. doi: 10.1109/TMTT.1979.1129778
    [8] 李新伟, 易磊. 非标器件S参数去嵌入测试方法研究[J]. 计量与测试技术, 2014, 41(6): 30-32.

    LI X W, YI L. Research on the testing method of S device parameters of non-standard[J]. Metrology & Measurement Technique, 2014, 41(6): 30-32(in Chinese).
    [9] 彭安虎, 韩周安, 李志强. T/R阵列自动测试系统去嵌入技术研究[J]. 中国测试, 2021, 47(7): 92-98.

    PENG A H, HAN Z A, LI Z Q. Research on de-embedding technology of T/R array automatic test system[J]. China Measurement & Testing Technology, 2021, 47(7): 92-98(in Chinese).
    [10] 吴宇, 高源慈, 钟催林, 等. 微波射频差分探针去嵌入理论研究[J]. 电子测量技术, 2020, 43(4): 16-22.

    WU Y, GAO Y C, ZHONG C L, et al. Microwave RF differential probe de-embedding theory research[J]. Electronic Measurement Technology, 2020, 43(4): 16-22(in Chinese).
    [11] 孟文营, 穆卓, 王身云. 一种PIN二极管参数的提取方法与应用[J]. 电子元件与材料, 2019, 38(4): 32-36.

    MENG W Y, MU Z, WANG S Y. Parameter extraction of PIN diode and its applications[J]. Electronic Components and Materials, 2019, 38(4): 32-36(in Chinese).
    [12] 刘迪. 怎样设计和验证TRL校准件及具体过程[J]. 电子产品世界, 2008(3): 123-126. doi: 10.3969/j.issn.1005-5517.2008.03.024

    LIU D. How to design and verify TRL Cal Kit also implementation of TRL calibration[J]. Electronic Engineering & Product World, 2008(3): 123-126(in Chinese). doi: 10.3969/j.issn.1005-5517.2008.03.024
    [13] 廖进昆, 刘仁厚. LRL校准法及其在微波测量中的应用[J]. 电子科技大学学报, 2000, 29(2): 149-152.

    LIAO J K, LIU R H. LRL calibration method and its application to microwave measurement[J]. Journal of University of Electronic Science and Technology of China, 2000, 29(2): 149-152(in Chinese).
    [14] ZUIGA-JUAREZ J E, REYNOSO-HERNANDEZ J A, MAYA-SANCHEZ M C. An improved multiline TRL method[C]//Proceedings of the 67th ARFTG Microwave Measurements Conference. Piscataway: IEEE Press, 2008: 139-142.
    [15] MARKS R B. A multiline method of network analyzer calibration[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(7): 1205-1215. doi: 10.1109/22.85388
    [16] WANG M, ZHAO Y J, JIN Y M, et al. Sensitivity analysis of multiport S-parameter due to non-ideal TRL calibration standards[J]. Radio Science, 2017, 52(9): 1096-1105. doi: 10.1002/2017RS006380
    [17] STEER M B, GOLDBERG S B, RINNE G, et al. Introducing the through-line deembedding procedure[C]//Proceedings of the International Microwave Symposium Digest. Piscataway: IEEE Press, 1992: 1455-1458.
    [18] 易波, 王为, 刘培国, 等. 基于改进TRL校准算法的二极管参数测量[J]. 中国舰船研究, 2015, 10(2): 121-124. doi: 10.3969/j.issn.1673-3185.2015.02.023

    YI B, WANG W, LIU P G, et al. Measurement of PIN diode parameters based on TRL calibration algorithm[J]. Chinese Journal of Ship Research, 2015, 10(2): 121-124(in Chinese). doi: 10.3969/j.issn.1673-3185.2015.02.023
    [19] 梁子健. 基于非均匀传输线重构的滤波器设计与电缆测试技术研究[D]. 广州: 华南理工大学, 2017.

    LIANG Z J. Design of filters and cable test technology based on reconstruction of non-uniform transmission lines[D]. Guangzhou: South China University of Technology, 2017(in Chinese) .
  • 加载中
图(19)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  72
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 录用日期:  2022-01-14
  • 网络出版日期:  2022-02-24
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答