留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰雪天气下基于MFOA-KELM残差修正的跑道温度混合预测

陈斌 刘悦 李庆真 丁宇 王立文

陈斌, 刘悦, 李庆真, 等 . 冰雪天气下基于MFOA-KELM残差修正的跑道温度混合预测[J]. 北京航空航天大学学报, 2022, 48(11): 2153-2164. doi: 10.13700/j.bh.1001-5965.2021.0646
引用本文: 陈斌, 刘悦, 李庆真, 等 . 冰雪天气下基于MFOA-KELM残差修正的跑道温度混合预测[J]. 北京航空航天大学学报, 2022, 48(11): 2153-2164. doi: 10.13700/j.bh.1001-5965.2021.0646
CHEN Bin, LIU Yue, LI Qingzhen, et al. Runway temperature hybrid prediction based on MFOA-KELM residual correction under ice and snow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2153-2164. doi: 10.13700/j.bh.1001-5965.2021.0646(in Chinese)
Citation: CHEN Bin, LIU Yue, LI Qingzhen, et al. Runway temperature hybrid prediction based on MFOA-KELM residual correction under ice and snow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2153-2164. doi: 10.13700/j.bh.1001-5965.2021.0646(in Chinese)

冰雪天气下基于MFOA-KELM残差修正的跑道温度混合预测

doi: 10.13700/j.bh.1001-5965.2021.0646
基金项目: 

国家自然科学基金委员会-中国民航局民航联合研究基金 U1933107

详细信息
    通讯作者:

    陈斌, E-mail: chenbindavid@163.com

  • 中图分类号: V219;TP311

Runway temperature hybrid prediction based on MFOA-KELM residual correction under ice and snow

Funds: 

Joint Fund of Civil Aviation Research of National Natural Science Foundation of China and Civil Aviation Administration of China U1933107

More Information
  • 摘要:

    道面温度短时精准预测是跑道积冰预警的关键因素之一, 为了解决单一机理预测模型随预测时间延长而造成误差累积的问题, 提出了一种冰雪天气下跑道温度混合预测方法。将跑道温度机理预测模型与核极限学习机(KELM)相结合, 建立一种数据驱动修正残差的跑道温度机理预测模型。针对果蝇优化算法(FOA)收敛速度慢、易陷入局部最小值的问题, 引入权值更新函数和距离扩充因子, 调整果蝇的全局寻优效果, 避免陷入局部极小值。利用改进的果蝇优化算法(MFOA)对KELM的正则化参数与核参数联合优化, 以冰雪天气下跑道温度实际数据为例, 建立基于改进果蝇优化核极限学习机(MFOA-KELM)的跑道温度混合预测模型, 并在不同时间尺度下对该混合预测模型进行仿真测试。实验结果表明:与单一机理预测模型相比, 当预测时长为120 min时, MFOA-KELM混合预测模型的平均绝对误差至少减小了61.43%, 在残差阈值为±0.5℃时, 平均预测准确率为91.25%。可见, MFOA-KELM混合预测模型具有更高的预测准确性, 研究结论显示该混合预测方法能够为机场跑道温度短时精准预测提供新思路。

     

  • 图 1  跑道热量传导过程示意图

    Figure 1.  Schematic diagram of runway heat transfer process

    图 2  函数优化曲线

    Figure 2.  Function optimization curves

    图 3  混合预测模型结构

    Figure 3.  Structure of hybrid prediction model

    图 4  MFOA-KELM模型流程

    Figure 4.  Flow chart of MFOA-KELM model

    图 5  模拟跑道温度实验系统采集平台

    Figure 5.  Simulation of runway temperature experimental system collecting platform

    图 6  样本1~样本4的预测结果

    Figure 6.  Prediction results of samples 1, 2, 3 and 4

    表  1  波音737-800起降参数[8]

    Table  1.   Taking-off and landing parameters of Boeing 737-800[8]

    参数 数值
    la/m 1 431
    wa/m 25
    ha/m 10
    mf/kg 56
    ηf 0.95
    ef/(J·kg-1) 43×106
    下载: 导出CSV

    表  2  标准测试函数[25]

    Table  2.   Standard test functions[25]

    函数 表达式 搜索区间 理论最优值
    F1 [-100, 100] 0
    F2 [-1.28, 1.28] 0
    F3 [-600, 600] 0
    F4 [-10, 10] 0
    下载: 导出CSV

    表  3  优化结果比较

    Table  3.   Optimization result comparison

    函数 MFOA FOA PSO DE
    平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差
    F1 8.195 2×10-26 7.752 3×10-28 0.000 190 81 7.532 3×10-7 3.609 5 2.145 4 23.354 1 5.936 5
    F2 5.769 5×10-5 4.638 2×10-5 0.001 278 8 0.000 277 66 0.185 83 0.065 835 0.329 56 0.085 208
    F3 0 0 1.275×10-5 5.276 7×10-8 0.016 197 0.020 383 1.211 3 0.084 048
    F4 0 0 81.204 6 95.036 1 53.307 8 12.502 6 212.245 5 9.562 8
    下载: 导出CSV

    表  4  实验数据样本

    Table  4.   Experimental data samples

    样本 日期 时间 采样间隔/min
    1 2020-01-05 20:00—08:00 1
    2 2019-12-23 10:00—22:00 1
    3 2019-12-28 19:00—07:00 1
    4 2020-01-07 08:00—20:00 1
    下载: 导出CSV

    表  5  机理预测模型参数

    Table  5.   Mechanistic prediction model parameters

    参数 数值
    I0/(W·m-2) 1 367
    P0/kPa 101.325
    cL/(J·kg-1·K-1) 4 200
    ρa/(kg·m-3) 1.29
    csnow/(J·kg-1·K-1) 2 100
    ca/(J·kg-1·K-1) 1 005.46
    σ/(W·m-2·K-4) 5.67×10-8
    cr/(J·kg-1·K-1) 970
    ρ/(kg·m-3) 1 930
    λ/(W·m-1·K-1) 1.7
    W0/(kg·m-2) 0.5
    εr 0.9
    r 0.7
    εa 0.929
    τ1/s 900
    τ2/s 1 800
    τ3/s 3 600
    τ4/s 7 200
    下载: 导出CSV

    表  6  样本1~样本4的平均绝对误差

    Table  6.   Mean absolute error of samples 1, 2, 3 and 4

    样本 预测时长/min 平均绝对误差
    机理预测模型 MFOA-KELM混合 FOA-KELM混合 KELM混合
    1 15 0.285 0.111 0.129 0.232
    30 0.575 0.130 0.147 0.222
    60 1.144 0.149 0.207 0.369
    120 2.336 0.194 0.243 0.265
    2 15 0.219 0.087 0.170 0.191
    30 0.268 0.124 0.128 0.218
    60 0.479 0.191 0.269 0.296
    120 0.879 0.339 0.459 0.516
    3 15 0.184 0.007 0.014 0.017
    30 0.368 0.014 0.031 0.034
    60 0.736 0.028 0.067 0.069
    120 1.472 0.055 0.106 0.138
    4 15 0.144 0.093 0.098 0.099
    30 0.230 0.095 0.107 0.111
    60 0.428 0.120 0.177 0.182
    120 0.849 0.186 0.415 0.503
    下载: 导出CSV

    表  7  不同残差阈值内平均预测准确率

    Table  7.   Average prediction accuracy under different residual threshold values

    预测时长/min 预测模型 不同允许误差范围内平均预测准确率/%
    ±0.5℃ ±1℃ ±2℃
    15 机理预测模型 97.29 100.00 100.00
    MFOA-KELM混合 100.00 100.00 100.00
    30 机理预测模型 58.75 81.04 100.00
    MFOA-KELM混合 100.00 100.00 100.00
    60 机理预测模型 39.58 73.96 99.58
    MFOA-KELM混合 100.00 100.00 100.00
    120 机理预测模型 18.75 40.42 74.38
    MFOA-KELM混合 91.25 99.38 100.00
    下载: 导出CSV
  • [1] KRŠMANC R, SLAK A Š, DEMŠAR J. Statistical approach for forecasting road surface temperature[J]. Meteorological Applications, 2013, 20(4): 439-446. doi: 10.1002/met.1305
    [2] 汤筠筠, 郭忠印. 基于自回归求和移动平均的冬季路温短临预测[J]. 同济大学学报(自然科学版), 2017, 45(12): 1824-1829. doi: 10.11908/j.issn.0253-374x.2017.12.012

    TANG J J, GUO Z Y. Winter road temperature short prognosis based on autoregressive summation moving average[J]. Journal of Tongji University (Natural Science Edition), 2017, 45(12): 1824-1829(in Chinese). doi: 10.11908/j.issn.0253-374x.2017.12.012
    [3] 秦健, 孙立军. 国外沥青路面温度预估方法综述[J]. 中外公路, 2005, 25(6): 19-23. doi: 10.3969/j.issn.1671-2579.2005.06.006

    QIN J, SUN L J. A review of foreign asphalt pavement temperature prediction methods[J]. Chinese and Foreign Highways, 2005, 25(6): 19-23(in Chinese). doi: 10.3969/j.issn.1671-2579.2005.06.006
    [4] BARBERE S. Calculation of maximum pavement temperatures from weather reports[R]. Washington, D.C. : National Research Council, 1957: 1-8.
    [5] CHRISTISON J T, ANDERSON K O. The response of asphalt pavements to low temperature climatic environments[C]//International Conference on the Structural Design of Asphalt Pavements, 1972: 44-56.
    [6] 严作人. 层状路面体系的温度场分析[J]. 同济大学学报, 1984(3): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198403006.htm

    YAN Z R. Temperature field analysis of laminated pavement systems[J]. Journal of Tongji University, 1984(3): 76-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198403006.htm
    [7] HU Y, ALMKVIST E, LINDBERG F, et al. The use of screening effects in modelling route-based daytime road surface temperature[J]. Theoretical and Applied Climatology, 2016, 125(1): 303-319.
    [8] NUIJTEN A D W. Runway temperature prediction, a case study for Oslo Airport, Norway[J]. Cold Regions Science and Technology, 2016, 125: 72-84. doi: 10.1016/j.coldregions.2016.02.004
    [9] 邱金晶, 陈锋, 张珏, 等. 浙江省高速公路路面温度预报模型性能检验及应用[J]. 气象科技, 2020, 48(4): 518-528. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202004011.htm

    QIU J J, CHEN F, ZHANG J, et al. Performance test and application of highway pavement temperature forecasting model in Zhejiang province[J]. Meteorological Science and Technology, 2020, 48(4): 518-528(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202004011.htm
    [10] 赵鸿铎, 姚祖康, 张长安, 等. 飞机除冰液对停机坪水泥混凝土的影响[J]. 交通运输工程学报, 2004, 4(2): 1-5. doi: 10.3321/j.issn:1671-1637.2004.02.001

    ZHAO H D, YAO Z K, ZHANG C A, et al. Effects of aircraft de-icing fluid on apron cement concrete[J]. Journal of Transportation Engineering, 2004, 4(2): 1-5(in Chinese). doi: 10.3321/j.issn:1671-1637.2004.02.001
    [11] 孙立军, 秦健. 沥青路面温度场的预估模型[J]. 同济大学学报(自然科学版), 2006, 34(4): 480-483. doi: 10.3321/j.issn:0253-374X.2006.04.011

    SUN L J, QIN J. Prediction model for temperature field of asphalt pavement[J]. Journal of Tongji University (Natural Science Edition), 2006, 34(4): 480-483(in Chinese). doi: 10.3321/j.issn:0253-374X.2006.04.011
    [12] 姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202105034.htm

    YAO Y Z, QIU P, XU J L, et al. Modeling of a gasifier in a fluid bed based on a hybrid model[J]. Journal of Chemical Engineering, 2021, 72(5): 2727-2734(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202105034.htm
    [13] 成庶, 刘嘉文, 伍珣, 等. 基于特征提取与误差补偿的金属化薄膜电容器剩余寿命预测[J]. 中国电机工程学报, 2022, 42(7): 2672-2680. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202207021.htm

    CHENG S, LIU J W, WU X, et al. Residual life prediction of metalized film capacitors based on feature extraction and error compensation[J]. Proceedings of the CSEE, 2022, 42(7): 2672-2680(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202207021.htm
    [14] HUANG G B. An insight into extreme learning machines: Random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390. doi: 10.1007/s12559-014-9255-2
    [15] 亓孝武, 李可军, 于小晏, 等. 基于核极限学习机和Bootstrap方法的变压器顶层油温区间预测[J]. 中国电机工程学报, 2017, 37(19): 5821-5828. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201719033.htm

    QI X W, LI K J, YU X Y, et al. Transformer top oil temperature interval prediction based on nuclear limit learning machine and Bootstrap method[J]. Proceedings of the CSEE, 2017, 37(19): 5821-5828(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201719033.htm
    [16] PAN W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26: 69-74.
    [17] MYTHILI S, KUMAR A V. Hybrid feature selection and heterogeneous clustering ensemble framework for detection of circulating tumor cells[J]. Journal of Medical Imaging and Health Informatics, 2016, 6(5): 1160-1166.
    [18] 王东. 在线核极限学习机的改进与应用研究[D]. 蚌埠: 安徽财经大学, 2015.

    WANG D. Research on the improvement and application of online kernel limit learning machine[D]. Bengbu: Anhui University of Finance and Economics, 2015(in Chinese).
    [19] 皮骏, 马圣, 张奇奇, 等. 基于改进果蝇算法优化的GRNN航空发动机排气温度预测模型[J]. 航空动力学报, 2019, 34(1): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201901002.htm

    PI J, MA S, ZHANG Q Q, et al. Optimized GRNN aero-engine exhaust temperature prediction model based on improved fruit fly algorithm[J]. Journal of Aerodynamics, 2019, 34(1): 8-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201901002.htm
    [20] 周淑贞. 气象学与气候学[M]. 北京: 高等教育出版社, 2004.

    ZHOU S Z. Meteorology and climatology[M]. Beijing: Higher Education Press, 2004(in Chinese).
    [21] 翁笃鸣, 李炬, 高歌. 晴天太阳总辐射的参数化及气候计算[J]. 气象科学, 1997, 17(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199701000.htm

    WENG D M, LI J, GAO G. Parameterization of total solar radiation on sunny days and climate calculation[J]. Meteorological Science, 1997, 17(1): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199701000.htm
    [22] 戚春香, 李瑶, 杨简, 等. 青藏高原机场跑道多年冻土地基温度场特征[J]. 交通运输工程学报, 2019, 19(1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201901007.htm

    QI C X, LI Y, YANG J, et al. Characteristics of multi-year permafrost foundation temperature field of airport runway on Qinghai-Tibet Plateau[J]. Journal of Transportation Engineering, 2019, 19(1): 33-47(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201901007.htm
    [23] 顾尔祚. 流体力学有限差分法基础[M]. 上海: 上海交通大学出版社, 1988.

    GU E Z. Fundamentals of finite difference method for fluid mechanics[M]. Shanghai: Shanghai Jiaotong University Press, 1988(in Chinese).
    [24] 杨锡运, 邢国通, 马雪, 等. 一种核极限学习机分位数回归模型及风电功率区间预测[J]. 太阳能学报, 2020, 41(11): 300-306. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202011040.htm

    YANG X Y, XING G T, MA X, et al. A kernel limit learning machine quantile regression model and wind power interval prediction[J]. Journal of Solar Energy, 2020, 41(11): 300-306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202011040.htm
    [25] SURJANOVIC S, BINGHAM D. Virtual library of simulation experiments: Test functions and datasets[EB/OL]. [2021-10-01]. http://www.sfu.ca/~ssurjano.
    [26] 蔡赛男, 宋卫星, 班利明, 等. 基于鲸鱼算法优化LSSVM的滚动轴承故障诊断[J]. 控制与决策, 2022, 37(1): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202201025.htm

    CAI S N, SONG W X, BAN L M, et al. Fault diagnosis of rolling bearings based on whale algorithm optimized LSSVM[J]. Control and Decision Making, 2022, 37(1): 230-236(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202201025.htm
    [27] 谷远利, 张源, 芮小平, 等. 基于免疫算法优化LSSVM的短时交通流预测[J]. 吉林大学学报(工学版), 2019, 49(6): 1852-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201906015.htm

    GU Y L, ZHANG Y, RUI X P, et al. Short-time traffic flow prediction based on immune algorithm optimized LSSVM[J]. Journal of Jilin University (Engineering Edition), 2019, 49(6): 1852-1857(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201906015.htm
    [28] 吴桂芳, 崔勇, 刘宏, 等. 基于差分进化算法的三维电场传感器解耦标定方法[J]. 电工技术学报, 2021, 36(19): 3993-4001. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202119004.htm

    WU G F, CUI Y, LIU H, et al. A decoupled calibration method for three-dimensional electric field sensors based on differential evolutionary algorithm[J]. Journal of Electrical Engineering Technology, 2021, 36(19): 3993-4001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202119004.htm
    [29] 中国民用航空局. 民用机场水泥混凝土道面设计规范: MH/T 5004—2010[S]. 北京: 中国民用航空局, 2010.

    Civil Aviation Administration of China. Specification for airportcement concrete pavement design: MH/T 5004—2010[S]. Beijing: Civil Aviation Administration of China, 2010(in Chinese).
    [30] 周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J/OL]. 北京航空航天大学学报, 2021(2021-07-12)[2021-10-26]. https://doi.org/10.13700/j.bh.1001-5965.2021.0247.

    ZHOU Z T, LIU L, SONG X, et al. A method for predicting the remaining service life of rolling bearings based on Transformer model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2021(2021-07-12)[2021-10-26]. https://doi.org/10.13700/j.bh.1001-5965.2021.0247(in Chinese).
    [31] 陈景龙, 王日新, 李玉庆, 等. 一种基于SD-ICA的卫星电池健康状态估计方法[J]. 北京航空航天大学学报, 2021, 47(10): 2058-2067. doi: 10.13700/j.bh.1001-5965.2020.0376#viewType=Abstract

    CHEN J L, WANG R X, LI Y Q, et al. A SD-ICA-based method for satellite battery health state estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2058-2067(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0376#viewType=Abstract
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  100
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-04-26
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答