留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国民用航空器CO2减排潜力的区域划分

曾雯 胡荣 宋文 刘志昊 张军峰

曾雯,胡荣,宋文,等. 中国民用航空器CO2减排潜力的区域划分[J]. 北京航空航天大学学报,2023,49(9):2455-2462 doi: 10.13700/j.bh.1001-5965.2021.0647
引用本文: 曾雯,胡荣,宋文,等. 中国民用航空器CO2减排潜力的区域划分[J]. 北京航空航天大学学报,2023,49(9):2455-2462 doi: 10.13700/j.bh.1001-5965.2021.0647
ZENG W,HU R,SONG W,et al. Regional classification of CO2 emission reduction potential of China’s civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2455-2462 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0647
Citation: ZENG W,HU R,SONG W,et al. Regional classification of CO2 emission reduction potential of China’s civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2455-2462 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0647

中国民用航空器CO2减排潜力的区域划分

doi: 10.13700/j.bh.1001-5965.2021.0647
基金项目: 国家自然科学基金(U1933117,U2033203)
详细信息
    通讯作者:

    E-mail:hoorong@nuaa.edu.cn

  • 中图分类号: U8

Regional classification of CO2 emission reduction potential of China’s civil aircraft

Funds: National Natural Science Foundation of China (U1933117,U2033203)
More Information
  • 摘要:

    对中国进行科学的区域划分,是研究具有区域差异性与空间相关性航空器CO2排放问题并提出差异化CO2减排措施的重要基础。基于2007—2016年中国部分地区民用航空器运行数据,在构建CO2减排潜力分类模型的基础上,通过Kruskal算法得到省域网络关系最小生成树;采用谱聚类算法,以“最大化区划优度”为目标,划分航空器CO2减排潜力的不同区域。结果表明:最优区域划分为四分区,区划优度为0.35;航空器CO2减排潜力高的区域主要分布于中国西南和中南地区,潜力低的区域主要分布于东北和华北地区;针对各区域CO2减排特征,从民航局、机场和航空公司等不同主体提出了差异化的区域CO2减排措施。

     

  • 图 1  区域航空器CO2减排潜力分类模型

    Figure 1.  Classification model of CO2 emission reduction potential of regional aircraft

    图 2  航空器CO2减排潜力省域邻接关系网络

    Figure 2.  Provincial adjacency network of aircraft CO2 emission reduction potential of aircraft

    图 3  航空器CO2减排潜力连续最小生成树

    Figure 3.  Continuous MST of aircraft CO2 emission reduction potential of aircraft

    图 4  不同分区数下的区划优度

    Figure 4.  Regional classification superiority with different partition numbers

    图 5  航空器CO2减排潜力最小生成树截断示意图

    Figure 5.  The truncated MST digram of aircraft CO2 emission reduction potential of aircraft

    图 6  四分区下区域航空器CO2减排潜力

    Figure 6.  CO2 emission reduction potential of regional aircraft under four partions

    表  1  航空器CO2减排潜力相关指标统计量

    Table  1.   Index statistics of Aircraft CO2 emission reduction potential

    指标CO2排放
    量/
    108 kg
    CO2排放

    度/(kg·人次−1)
    货邮
    吞吐
    量/
    107 kg
    旅客
    吞吐
    量/106人次
    换算旅客

    吐量/106人次
    最大值33.2073.17386.92114.40149.45
    最小值0.2310.910.530.820.93
    均值5.5025.4337.7721.4825.68
    方差27.81101.465185.26508.76889.26
    下载: 导出CSV

    表  2  不同区域划分方法的区划优度

    Table  2.   Regional classification superiority with different partition methods

    分区方法区划优度
    四分区(本文方法)0.35
    东中西分区0.16
    六大行政分区0.07
    八大经济分区0.25
    下载: 导出CSV
  • [1] JACOB T, JACOPO T, APOSTOLOS P, et al. CO2 emissions from fuel combustion: IEA 2020[R]. Paris: OECD Publishing, 2020: 9-12.
    [2] WU C T, HE X H, DOU Y. Regional disparity and driving forces of CO2 emissions: Evidence from China’s domestic aviation transport sector[J]. Journal of Transport Geography, 2019, 76: 71-82. doi: 10.1016/j.jtrangeo.2019.02.009
    [3] 朱佳琳. 中国民用航空器碳排放时空演化特征及驱动因素研究[D]. 南京: 南京航空航天大学, 2020: 37-43.

    ZHU J L. Spatial-temporal evolution characteristics and driving factors of carbon emissions from civil aircraft in China[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 37-43(in Chinese).
    [4] HU R, ZHU J L, ZHANG Y, et al. Spatial characteristics of aircraft CO2 emissions at different airports: Some evidence from China[J]. Transportation Research Part D:Transport and Environment, 2020, 85: 102435. doi: 10.1016/j.trd.2020.102435
    [5] LIU J G, LI S J, JI Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China[J]. Energy, 2021, 224: 120178. doi: 10.1016/j.energy.2021.120178
    [6] 曾晓莹, 邱荣祖, 林丹婷, 等. 中国交通碳排放及影响因素时空异质性[J]. 中国环境科学, 2020, 40(10): 4304-4313.

    ZENG X Y, QIU R Z, LIN D T, et al. Spatio-temporal heterogeneity of transportation carbon emissions and its influencing factors in China[J]. China Environmental Science, 2020, 40(10): 4304-4313(in Chinese).
    [7] 宋德勇, 徐安. 中国城镇碳排放的区域差异和影响因素[J]. 中国人口·资源与环境, 2011, 21(11): 8-14.

    SONG D Y, XU A. Regional difference and influential factors of China's urban carbon emissions[J]. China Population, Resources and Environment, 2011, 21(11): 8-14(in Chinese).
    [8] 王建伟, 李娉, 高洁. 中国交通运输碳减排区域划分[J]. 长安大学学报(自然科学版), 2012, 32(1): 72-77.

    WANG J W, LI P, GAO J. Region division in China for transportation carbon emission reduction[J]. Journal of Chang’an University (Natural Science Edition), 2012, 32(1): 72-77(in Chinese).
    [9] 武旭, 杜奕, 贾传峻. 基于全距离完全度量聚类的交通运输能耗区域划分[J]. 交通运输系统工程与信息, 2019, 19(2): 7-12.

    WU X, DU Y, JIA C J. Regionalization of China’s transportation energy consumption based on full-order-constrained complete linkage partitioning[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 7-12(in Chinese).
    [10] 张彬, 姚娜, 刘学敏. 基于模糊聚类的中国分省碳排放初步分析[J]. 中国人口·资源与环境, 2011, 21(1): 53-56.

    ZHANG B, YAO N, LIU X M. Preliminary fuzzy clustering analysis on carbon emission in different provinces of China[J]. China Population, Resources and Environment, 2011, 21(1): 53-56(in Chinese).
    [11] 涂正革, 谌仁俊. 中国碳排放区域划分与减排路径: 基于多指标面板数据的聚类分析[J]. 中国地质大学学报(社会科学版), 2012, 12(6): 7-13.

    TU Z G, CHEN R J. Regional division of carbon emission and emission reduction path in China: Cluster analysis based on multi-index panel data[J]. Journal of China University of Geosciences (Social Sciences Edition), 2012, 12(6): 7-13(in Chinese).
    [12] CHANG K L, DU Z F, CHEN G J, et al. Panel estimation for the impact factors on carbon dioxide emissions: A new regional classification perspective in China[J]. Journal of Cleaner Production, 2021, 279: 123637. doi: 10.1016/j.jclepro.2020.123637
    [13] 朱佳琳, 胡荣, 张军峰, 等. 中国航空器碳排放测算与演化特征研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 558-563.

    ZHU J L, HU R, ZHANG J F, et al. Research on the measurement and evolution characteristics of aircraft carbon emissions in China[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(3): 558-563(in Chinese).
    [14] 杨娟, 谢远涛. 面板数据聚类的复合方法与应用[M]. 北京: 对外经济贸易大学出版社, 2016: 19-20.

    YANG J, XIE Y T. Composite method and application of panel data clustering[M]. Beijing: University of International Business and Economics Press, 2016: 19-20(in Chinese).
    [15] 刘贤赵, 郭若鑫, 张勇, 等. 中国省域碳排放空间依赖结构的非参数估计及其实证分析[J]. 中国人口·资源与环境, 2019, 29(5): 40-51.

    LIU X Z, GUO R X, ZHANG Y, et al. Nonparametric estimation and empirical analysis of spatial dependence structure of provincial carbon emissions in China[J]. China Population, Resources and Environment, 2019, 29(5): 40-51(in Chinese).
    [16] FAVATI P, LOTTI G, MENCHI O, et al. Construction of the similarity matrix for the spectral clustering method: Numerical experiments[J]. Journal of Computational and Applied Mathematics, 2020, 375: 112795. doi: 10.1016/j.cam.2020.112795
    [17] MUR A, DORMIDO R, DURO N, et al. Determination of the optimal number of clusters using a spectral clustering optimization[J]. Expert Systems with Applications, 2016, 65: 304-314. doi: 10.1016/j.eswa.2016.08.059
    [18] 郭鹏程. 中国民航客运碳排放时空演变与影响因素研究[D]. 兰州: 西北师范大学, 2020: 31-34.

    GUO P C. Spatial-temporal evolution and influencing factors of carbon emissions of civil aviation passenger transport in China[D]. Lanzhou: Northwest Normal University, 2020: 31-34(in Chinese).
    [19] 胡荣, 王德芸, 冯慧琳, 等. 碳达峰视角下的机场航空器碳排放预测[J]. 交通运输系统工程与信息, 2021, 21(6): 257-263.

    HU R, WANG D Y, FENG H L, et al. Prediction of aircraft CO2 emission from perspective of CO2 emission peak[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 257-263(in Chinese).
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  49
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-02-11
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答