留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IFB不确定性对双频码载分歧监测的影响分析

康凯 王志鹏 方堃 朱衍波

康凯,王志鹏,方堃,等. IFB不确定性对双频码载分歧监测的影响分析[J]. 北京航空航天大学学报,2023,49(9):2463-2472 doi: 10.13700/j.bh.1001-5965.2021.0649
引用本文: 康凯,王志鹏,方堃,等. IFB不确定性对双频码载分歧监测的影响分析[J]. 北京航空航天大学学报,2023,49(9):2463-2472 doi: 10.13700/j.bh.1001-5965.2021.0649
KANG K,WANG Z P,FANG K,et al. Impact of IFB uncertainty on dual-frequency code carrier divergence monitoring[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2463-2472 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0649
Citation: KANG K,WANG Z P,FANG K,et al. Impact of IFB uncertainty on dual-frequency code carrier divergence monitoring[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2463-2472 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0649

IFB不确定性对双频码载分歧监测的影响分析

doi: 10.13700/j.bh.1001-5965.2021.0649
基金项目: 国家重点研发计划(2020YFB0505602);国家自然科学基金(61871012,62022012);民航安全能力建设基金(CAAC Contract 2021(77),CAAC Contract 2020(123));北京市科技创新基金(Z191100001119134)
详细信息
    通讯作者:

    E-mail:fangkun@buaa.edu.cn

  • 中图分类号: V249.32

Impact of IFB uncertainty on dual-frequency code carrier divergence monitoring

Funds: National Key R & D Program of China (2020YFB0505602); National Natural Science Foundation of China (61871012,62022012); Civil Aviation Security Capacity Building Fund Project (CAAC Contract 2021(77),CAAC Contract 2020(123)); Beijing Nova Program of Science and Technology (Z191100001119134)
More Information
  • 摘要:

    码载分歧(CCD)监测器是卫星导航地基增强系统(GBAS)引入的完好性监测器之一,用于监测码伪距与载波相位观测值之间的不一致性。双频平滑技术的引入改变了CCD监测器的检验统计量等参数,进而影响了监测性能。针对双频GBAS中存在的频间偏差(IFB),基于北斗双频观测数据,分析IFB不确定性对于双频码载分歧监测性能的影响。研究结果表明:在IFB不确定性的影响下,监测器的阈值增大了26.1%,导致其在发生CCD故障情况下的漏检率显著增大,最小可检测故障值增大了26.9%,监测器的灵敏度降低;最坏情况下系统完好性损失概率从低于10−14增大到接近10−8,同时机载端为满足漏检率性能安全要求所引入的延迟值更大,导致CCD监测器的故障响应变慢,双频GBAS的完好性受到影响。

     

  • 图 1  GBAS载波平滑处理过程

    Figure 1.  GBAS carrier smoothing process

    图 2  检验统计量时间序列

    Figure 2.  Time series of test statistics

    图 3  检验统计量分布

    Figure 3.  Distribution of test statistics

    图 4  双频CCD监测器阈值

    Figure 4.  Threshold of dual-frequency CCD monitor

    图 5  PMD对比

    Figure 5.  Comparison of PMD

    图 6  最小可检测故障对比

    Figure 6.  Comparison of minimum detectable fault

    图 7  地面端和机载端平滑误差

    Figure 7.  Smoothing error of ground terminal and airborne terminal

    图 8  差分误差

    Figure 8.  Difference error

    图 9  完好性损失概率

    Figure 9.  Probability related to loss of integrity

    图 10  监测器性能安全验证(${\mathit{t}}_{{{\rm{delay}}}}$=0)

    Figure 10.  Monitor performance safety verification (${\mathit{t}}_{\rm{delay}}$=0)

    图 11  监测器性能安全验证(${\mathit{t}}_{\rm{delay}}$=50 s)

    Figure 11.  Monitor performance safety verification (${\mathit{t}}_{\rm{delay}}$=50 s)

    表  1  监测阈值比较

    Table  1.   Comparison of monitoring threshold

    仿真试验场景原始标准差/
    (10−4 m·s−1)
    包络标准差/
    (10−4 m·s−1)
    阈值/
    (10−4 m·s−1)
    包含IFB不确定性6.221058
    扣除IFB不确定性4.177.8846
    下载: 导出CSV

    表  2  不同监测阈值对应的漏检率对比

    Table  2.   Comparison of PMD related to different monitoring thresholds

    监测阈值/(m·s−1) ${\mathrm{P}\mathrm{M}\mathrm{D}}_{1} $ ${\mathrm{P}\mathrm{M}\mathrm{D}}_{2} $
    7×10−5 11.68 0.12
    8×10−5 1.39 7.99×10−4
    9×10−7 6.87 1.18×10−4
    1×10−7 1.33 3.62×10−7
    1.1×10−10 9.96 2.29×10−8
    下载: 导出CSV

    表  3  CCD故障误差分析的仿真条件

    Table  3.   Simulation conditions of CCD fault error analysis

    参数数值
    CCD监测器滤波时间常数$ {\tau }_{\mathrm{m}} $/s30
    Hatch滤波的时间常数$ \tau $/s100
    CCD故障发生的时刻$ {t}_{\mathrm{f}} $/s450
    地面双频CCD监测器初始化时刻$ {t}_{\mathrm{g},0} $/s0
    机载双频CCD监测器初始化时刻$ {t}_{\mathrm{a},0} $/s600
    从机载滤波器初始化到将测量值
    应用于定位解的时间延迟$ {t}_{\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{y}} $/s
    0, 50
    地面端延迟$ {\tau }_{\mathrm{G}} $/s1.5
    数据及完好性信息的更新率$ {f}_{\mathrm{C}} $/Hz2
    仿真时间$ t $/s[0∶0.5∶1800]
    故障$ d $/( m·s−1)0.001
    下载: 导出CSV

    表  4  为满足PMD要求在机载端引入的最小$ {\mathit{t}}_{\mathbf{d}\mathbf{e}\mathbf{l}\mathbf{a}\mathbf{y}} $值

    Table  4.   Minimum $ {\mathit{t}}_{\mathbf{d}\mathbf{e}\mathbf{l}\mathbf{a}\mathbf{y}} $ introduced in airborn to meet PMD requirements

    故障模式包含IFB不确定性/s扣除IFB不确定性/s
    MC1 (MP1)5022
    MC3 (MP3)60
    下载: 导出CSV
  • [1] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017.

    XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2017 (in Chinese).
    [2] Radio Technical Commission for Aeronautics (RTCA) Special Committee 159 (SC-159). Minimum operational performance standards for GPS local area augmentation system airborne equipment: DO-253C[S]. Washington, D. C. : RTCA, 2008.
    [3] Radio Technical Commission for Aeronautics (RTCA) Special Committee 159 (SC-159). Minimum operational performance standards for GPS local area augmentation system airborne Equipment: DO-253D[S]. Washington, D. C. : RTCA, 2017.
    [4] International Civil Aviation Organization (ICAO) Navigation Systems Panel (NSP). GBAS CAT II/III development baseline SARPs[S]. Montreal: ICAO, 2010.
    [5] XIE G. Optimal on-airport monitoring of the integrity of GPS-based landing systems[D]. Stanford: Stanford University, 2004.
    [6] SIMILI D V, PERVAN B. Code-carrier divergence monitoring for the GPS local area augmentation system[C]// 2006 IEEE/ION Position, Location, and Navigation Symposium. Piscataway: IEEE Press, 2006.
    [7] European Organization for Civil Aviation Equipment (EUROCAE). Minimum operational performance specification for global navigation satellite ground based augmentation system ground equipment to support category I operations: ED-114A[S]. SaintDenis: EUROCAE, 2013.
    [8] KONNO H. Dual-frequency smoothing for CAT III LAAS performance assessment considering ionosphere anomalies[C]//Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007). Fort Worth: The Institute of Navigation, 2007: 424-437.
    [9] SUNG Y T, LIN Y W, YEH S J, et al. A dual-frequency ground based augmentation system prototype for GPS and BDS[C]// Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2019). Fort Worth: The Institute of Navigation, 2019: 628-636.
    [10] CIRCIU M S, MEURER M, FELUX M, et al. Evaluation of GPS L5 and Galileo E1 and E5a performance for future multifrequency and multiconstellation GBAS[J]. Navigation, 2017, 64(1): 149-163. doi: 10.1002/navi.181
    [11] FELUX M, CIRCIU M, BELABBAS B, et al. Concept for a dual frequency dual constellation GBAS[C]// Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2015). Fort Worth: The Institute of Navigation, 2015: 1519-1525.
    [12] KONNO H, PULLEN S, RIFE J, et al. Ionosphere monitoring methodology for hybrid dual-frequency LAAS[C]// Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006). Fort Worth: The Institute of Navigation, 2006: 409-424.
    [13] KONNO H, PULLEN S, RIFE J, et al. Evaluation of two types of dual-frequency differential GPS techniques under anomalous ionosphere conditions[C]// Proceedings of the 2006 National Technical Meeting of the Institute of Navigation. Fort Worth: The Institute of Navigation, 2006: 735-747.
    [14] JIANG Y P, MILNER C, MACABIAU C. Code carrier divergence monitoring for dual-frequency GBAS[J]. GPS Solutions, 2017, 21(2): 769-781. doi: 10.1007/s10291-016-0567-4
    [15] BAO Y D, LI J, LIU H N. Extraction and analysis of DCB daily variation based on single station dual-frequency observations[C]//Proceedings of the 9th China Satellite Navigation Academic Annual Conference. Berlin: Springer, 2018.
    [16] MA G, MARUYAMA T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan[J]. Annales Geophysicae, 2003, 21(10): 2083-2093. doi: 10.5194/angeo-21-2083-2003
    [17] HOLASCHUTZ D, BISHOP R H, HARRIS R B, et al. Inter-frequency bias estimation for the GPS monitor station network[C]// International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008). Savannah: The Institute of Navigation, 2008: 2405-2415.
    [18] LI Z S, YUAN Y B, LI H, et al. Two-step method for the determination of the differential code biases of COMPASS satellites[J]. Journal of Geodesy, 2012, 86(11): 1059-1076. doi: 10.1007/s00190-012-0565-4
    [19] LIU Y H, LI X H, ZHANG H J, et al. Calculation and accuracy evaluation of TGD from IFB for BDS[J]. GPS Solutions, 2016, 20(3): 461-471. doi: 10.1007/s10291-015-0454-4
    [20] MURPHY T, GEREN P, PANKASKIE T. GPS antenna group delay variation induced errors in a GNSS based precision approach and landing systems[C]// 20th International Technical Meeting of the Satellite Division. Fort Worth: The Institute of Navigation, 2007: 2974-2989.
    [21] BEER S, WANNINGER L, HEBELBANTH A. Estimation of absolute GNSS satellite antenna group delay variations based on those of absolute receiver antenna group delays[J]. GPS Solutions, 2021, 25(3): 1-10.
    [22] THOMAS Z. A new evaluation of maximum allowable errors and missed detection probabilities for LAAS ranging source monitors[C]// Proceedings of the 58th Annual Meeting of The Institute of Navigation and CIGTF 21st Guidance Test Symposium (2002). Fort Worth: The Institute of Navigation, 2002: 187-194.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  48
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-02-21
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答