留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

推进剂储罐裂纹缺陷非概率可靠性分析方法

辛腾达 崔村燕 刘阳 同江 段永胜

辛腾达,崔村燕,刘阳,等. 推进剂储罐裂纹缺陷非概率可靠性分析方法[J]. 北京航空航天大学学报,2023,49(9):2330-2336 doi: 10.13700/j.bh.1001-5965.2021.0651
引用本文: 辛腾达,崔村燕,刘阳,等. 推进剂储罐裂纹缺陷非概率可靠性分析方法[J]. 北京航空航天大学学报,2023,49(9):2330-2336 doi: 10.13700/j.bh.1001-5965.2021.0651
XIN T D,CUI C Y,LIU Y,et al. Non-probabilistic reliability analysis method for propellent tank with crack defect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2330-2336 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0651
Citation: XIN T D,CUI C Y,LIU Y,et al. Non-probabilistic reliability analysis method for propellent tank with crack defect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2330-2336 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0651

推进剂储罐裂纹缺陷非概率可靠性分析方法

doi: 10.13700/j.bh.1001-5965.2021.0651
基金项目: 发射综合安全评估与试验验证技术(ZRHT2020T06)
详细信息
    通讯作者:

    E-mail:xtd0701@126.com

  • 中图分类号: V555.+1

Non-probabilistic reliability analysis method for propellent tank with crack defect

Funds: Launch Comprehensive Safety Assessment and Test Verification Technology(ZRHT2020T06)
More Information
  • 摘要:

    在推进剂储罐服役期内,准确地对裂纹缺陷进行分析,掌握储罐存在裂纹缺陷情况下的可靠状态,既可保证发射场的安全,亦可有效避免不必要的恐慌,为应急预案的制定提供参考。基于区间理论与失效评定图理论,提出一种非概率失效评定图(NFAD)可靠性分析方法。有效解决了工程实际中难以准确获得失效评定点与失效评定曲线情况下,推进剂储罐裂纹缺陷的可靠性分析问题。结合实例参数对所提方法进行验证,结果表明:无需精确失效评定图与失效评定曲线,所提方法可对储罐裂纹缺陷的任意状态进行分析,并可以充分考虑分析中的不确定性,将传统失效评定图方法失效或可靠的二元逻辑状态细化为3种情况,可靠性指标为0表示失效状态,可靠性指标大于0小于1表示可靠度,可靠性指标大于等于1表示安全裕度。

     

  • 图 1  非概率失效评定图模型

    Figure 1.  Non-probabilistic failure assessment diagram model

    图 2  非概率失效评定图区间变量转换

    Figure 2.  Interval variable conversion of non-probabilistic failure assessment diagram

    图 3  标准化区间转换

    Figure 3.  Conversion of normalized interval

    图 4  可靠性指标与安全系数间关系

    Figure 4.  Relation between reliability index and safety factor

    图 5  储罐表面裂纹可靠性指标

    Figure 5.  Reliability index of tank surface crack

    图 6  储罐埋藏裂纹可靠性指标

    Figure 6.  Reliability index of embedded crack of tank

    表  1  示例参数

    Table  1.   Sample parameters MPa

    序号$\underline K _{\text{r} }$${\overline K_{\text{r} } }$$\underline {L} _{\text{r} }$${\overline L_{\text{r} } }$
    10.50.60.60.7
    20.50.70.60.7
    30.60.70.70.8
    40.60.80.70.8
    50.70.80.80.9
    60.70.90.80.9
    70.80.90.91.0
    80.81.00.91.0
    90.91.01.01.1
    100.91.11.01.1
    下载: 导出CSV

    表  2  可靠性分析结果

    Table  2.   Reliability analysis results

    示例${\eta _{\rm{d} } }$状态$f_{{\rm{s}}1}$状态$f_{{\rm{s}}2}$状态$f_{{\rm{s}}3}$状态$f_{{\rm{s}}4}$状态
    1 1.21 可靠 1.21 可靠 1.38 可靠 1.44 可靠 1.64 可靠
    2 1.12 可靠 1.12 可靠 1.22 可靠 1.44 可靠 1.64 可靠
    3 1.05 可靠 1.05 可靠 1.19 可靠 1.21 可靠 1.38 可靠
    4 0.98 非完全可靠 失效 1.07 可靠 1.21 可靠 1.38 可靠
    5 0.65 非完全可靠 失效 1.04 可靠 1.05 可靠 1.18 可靠
    6 0.05 非完全可靠 失效 失效 1.05 可靠 1.18 可靠
    7 0 失效 失效 失效 失效 1.04 可靠
    8 0 失效 失效 失效 失效 1.04 可靠
    9 0 失效 失效 失效 失效 失效
    10 0 失效 失效 失效 失效 失效
     注:fs1fs2fs3fs4分别为$\left(\overline L_{\mathrm{r} }, \overline{K}_{\mathrm{r} }\right)$, $ f_{1}\left(L_{\mathrm{r}}\right) $;$\left(\overline L_{\mathrm{r} }, \overline {K}_{\mathrm{r} }\right)$,$ f_{2}\left(L_{\mathrm{r}}\right) $;$\left(\underline{L}_{{\rm{r}}}, \underline{K}_{{\rm{r}}}\right)$,$ f_{1}\left(L_{\mathrm{r}}\right) $;$\left(\underline{L}_{{\rm{r}}}, \underline{K}_{{\rm{r}}}\right)$,$ f_{2}\left(L_{\mathrm{r}}\right) $传统失效评定图方法的可靠性指标。
    下载: 导出CSV

    表  3  某型推进剂储罐应力参数

    Table  3.   Stress parameters of a certain propellant tank

    $\sigma _{\text{m}}^{\text{c}}$ $\sigma _{\text{m}}^{\text{r}}$ $\sigma _{\text{s}}^{\text{c}}$ $\sigma _{\text{s}}^{\text{r}}$ $\sigma _{\text{d}}^{\text{c}}$ $\sigma _{\text{d}}^{\text{r}}$
    101.469 30.147 300 15 30.147 3.015
    下载: 导出CSV
  • [1] BANNISTER A C, RUIZ OCEJO J, GUTIERREZ-SOLANA F. Implications of the yield stress/tensile stress ratio to the SINTAP failure assessment diagrams for homogeneous materials[J]. Engineering Fracture Mechanics, 2000, 67(6): 547-562. doi: 10.1016/S0013-7944(00)00073-4
    [2] British Energy Generation Limited. Assessment of the integrity of structures containing defects : R6 Revision 4[S]. Gloucester: British Energy Generation Limited, 2001.
    [3] British Standards Institute. Guide on methods for assessing the acceptability of flaws in metallic structures: BS 7910[S]. London: BSI Standards Limited, 2013.
    [4] American Petroleum Institute and American Society of Mechanical Engineers. Fitness-for-service: API 579-1/ASME FFS-1[S]. Washington, D.C. : API Publishing Services, 2016.
    [5] 国家市场监督管理总局, 国家标准化管理委员会. 在用含缺陷压力容器安全评定: GB/T 19624—2019[S]. 北京: 中国标准出版社, 2019.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Safety assessment of in-service pressure vessels containing defects: GB/T 19624—2019[S]. Beijing: Standards Press of China, 2019 (in Chinese).
    [6] WEI S J, TOMAC I. Numerical evaluation of failure assessment diagram (FAD) for hydraulic fracture propagation in sandstone[J]. Engineering Fracture Mechanics, 2022, 263: 108311. doi: 10.1016/j.engfracmech.2022.108311
    [7] RADU D, SEDMAK A, BĂNCILĂ R. Determining the crack acceptability in the welded joints of a wind loaded cylindrical steel shell structure[J]. Engineering Failure Analysis, 2018, 91: 341-353. doi: 10.1016/j.engfailanal.2018.04.032
    [8] AINSWORTH R A, GINTALAS M, SAHU M K, et al. Application of failure assessment diagram methods to cracked straight pipes and elbows[J]. International Journal of Pressure Vessels and Piping, 2016, 148: 26-35. doi: 10.1016/j.ijpvp.2016.10.005
    [9] KINGKLANG S, DAODON W, UTHAISANGSUK V. Failure investigation of liquefied petroleum gas cylinder using FAD and XFEM[J]. International Journal of Pressure Vessels and Piping, 2019, 171: 69-78. doi: 10.1016/j.ijpvp.2019.02.007
    [10] ANDREWS R, COSHAM A, MACDONALD K. Application of BS 7910 to high pressure pipelines[J]. International Journal of Pressure Vessels and Piping, 2018, 168: 148-155. doi: 10.1016/j.ijpvp.2018.09.008
    [11] CHOCAT R, BEAUCAIRE P, DEBEUGNY L, et al. Damage tolerance reliability analysis combining Kriging regression and support vector machine classification[J]. Engineering Fracture Mechanics, 2019, 216: 106514. doi: 10.1016/j.engfracmech.2019.106514
    [12] PLUVINAGE G, BOULEDROUA O, HADJ MELIANI M, et al. Corrosion defect analysis using domain failure assessment diagram[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 126-134. doi: 10.1016/j.ijpvp.2018.06.005
    [13] XIAO Q D, LIU Y H, DAI Y W. Developments of strain-based failure assessment diagram applications: Measuring reference strain by displacement and a modified assessment method[J]. International Journal of Mechanical Sciences, 2018, 140: 27-36. doi: 10.1016/j.ijmecsci.2018.02.045
    [14] ROTH S, KUNA M. Prediction of size-dependent fatigue failure modes by means of a cyclic cohesive zone model[J]. International Journal of Fatigue, 2017, 100: 58-67. doi: 10.1016/j.ijfatigue.2017.01.044
    [15] RADU V, ROTH M. Probabilistic fracture mechanics applied for DHC assessment in the cool-down transients for CANDU pressure tubes[J]. Nuclear Engineering and Design, 2012, 253: 211-218. doi: 10.1016/j.nucengdes.2012.08.036
    [16] BOULEDROUA O, ZELMATI D, HASSANI M. Inspections, statistical and reliability assessment study of corroded pipeline[J]. Engineering Failure Analysis, 2019, 100: 1-10. doi: 10.1016/j.engfailanal.2019.02.012
    [17] JIN H J, WU S J. Effect of plasticity constraint on structural integrity assessment of pressure vessel welds[J]. International Journal of Pressure Vessels and Piping, 2015, 134: 72-81. doi: 10.1016/j.ijpvp.2015.09.001
    [18] BERGANT M A, YAWNY A A, PEREZ IPIÑA J E. A comparison of failure assessment diagram options for Inconel 690 and Incoloy 800 nuclear steam generators tubes[J]. Annals of Nuclear Energy, 2020, 140: 107310. doi: 10.1016/j.anucene.2020.107310
    [19] FUENTES J D, CICERO S, IBÁÑEZ-GUTIÉRREZ F T, et al. On the use of British standard 7910 option1 failure assessment diagram to non-metallic materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(1): 146-158.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-03-08
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答