留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DES与DDES在湍流分离中的原理与性能研究

宋汉奇 张恺玲 马鸣 阎超

宋汉奇,张恺玲,马鸣,等. DES与DDES在湍流分离中的原理与性能研究[J]. 北京航空航天大学学报,2023,49(9):2482-2492 doi: 10.13700/j.bh.1001-5965.2021.0653
引用本文: 宋汉奇,张恺玲,马鸣,等. DES与DDES在湍流分离中的原理与性能研究[J]. 北京航空航天大学学报,2023,49(9):2482-2492 doi: 10.13700/j.bh.1001-5965.2021.0653
SONG H Q,ZHANG K L,MA M,et al. Theory and performance research of DES and DDES in turbulent separation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2482-2492 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0653
Citation: SONG H Q,ZHANG K L,MA M,et al. Theory and performance research of DES and DDES in turbulent separation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2482-2492 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0653

DES与DDES在湍流分离中的原理与性能研究

doi: 10.13700/j.bh.1001-5965.2021.0653
基金项目: 国家数值风洞项目(NNW2019ZT1-A03); 国家自然科学基金(11721202)
详细信息
    通讯作者:

    E-mail:yanchao@buaa.edu.cn

  • 中图分类号: V211.3

Theory and performance research of DES and DDES in turbulent separation

Funds: National Numerical Wind Tunnel Project (NNW2019ZT1-A03); National Natural Science Foundation of China (11721202)
More Information
  • 摘要:

    随着工程上流动结构的日益复杂,兼具雷诺平均Navier-Stokes(RANS)方法高效率与大涡模拟(LES)高精度的分离涡模拟(DES)类混合方法成为现阶段工程中最有效的湍流模拟方法之一。围绕DES类混合方法中的DES与延迟分离涡模拟(DDES)方法开展工作,分析二者开关函数构造上的不同,研究延迟因子作用机理,并考察DES与DDES方法的求解能力。研究表明:DES与DDES方法在模拟表现上存在一定差异,DDES方法通过引入延迟因子,保护RANS求解区域,改善模化应力不足,降低了DDES方法对交界面系数CDES敏感程度; DDES方法在计算过程中容易出现过度保护,导致求解瞬时涡结构能力不如DES方法,分析与延迟因子引入比重及开关函数构造形式有关。

     

  • 图 1  后向台阶流动局部网格划分

    Figure 1.  Local mesh generation of backward step flow

    图 2  不同方法计算的时均上壁面摩擦系数分布

    Figure 2.  Distribution of time-averaged top wall friction coefficients calculated with different methods

    图 3  DES与DDES方法计算的不同站位雷诺应力分布

    Figure 3.  Distribution of Reynolds stress at different stations calculated by DES and DDES methods

    图 4  不同方法计算的时均上壁面摩擦系数分布及与SST-RANS方法计算结果的对比

    Figure 4.  Distribution of time averaged top wall friction coefficients calculated with different methods and comparison with SST-RANS method calalations

    图 5  更改CDES前后DES与DDES方法计算的不同站位雷诺应力分布

    Figure 5.  Distribution of Reynolds stress at different stations calculated by DES and DDES methods before and after changing CDES

    图 6  4种DES类方法计算的Q准则瞬时涡量图

    Figure 6.  Q-criterion instantaneous vorticity diagram calculation by four DES-like methods

    图 7  SST-DES与SST-DDES方法功率谱分析图

    Figure 7.  Power spectrum analysis plots of SST-DES and SST-DDES method

    图 8  超音速凹腔-压缩拐角算例局部网格划分

    Figure 8.  Local mesh generation of supersonic cavity-compression corner

    图 9  时均壁面摩擦系数分布

    Figure 9.  Distribution of time-averaged wall friction coefficient

    图 10  不同站位时均流向速度分布

    Figure 10.  Distributions of time-averaged streamwise velocity at different locations

    图 11  时均涡黏性等值线图

    Figure 11.  Time-averaged eddy viscosity contour map

    图 12  3种DES方法在2个瞬时状态下的Q准则涡量图

    Figure 12.  Q-criterion instantaneous vorticity diagram for 3 DES methods at 2 transient states

  • [1] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的评述与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857.

    YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamic Sinica, 2020, 38(5): 829-857(in Chinese).
    [2] SLONTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178 [R]. Washing ton, D. C. : NASA, 2014.
    [3] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 第2版. 北京: 清华大学出版社, 2017: 173-174.

    ZHANG Z S, CUI G X, XU C X. Theory and modeling of turbulence[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 173-174 (in Chinese).
    [4] 肖志祥, 罗堃宇, 刘健. 宽速域RANS-LES混合方法的发展及应用[J]. 空气动力学学报, 2017, 35(3): 338-353.

    XIAO Z X, LUO K Y, LIU J. Developments and applications of hybrid RANS-LES methods for wide-speed-range flows[J]. Acta Aerodynamica Sinica, 2017, 35(3): 338-353(in Chinese).
    [5] 杜若凡, 阎超, 韩政, 等. DDES延迟函数在超声速底部流动中的性能分析[J]. 北京航空航天大学学报, 2017, 43(8): 1585-1593.

    DU R F, YAN C, HAN Z, et al. Performance of delayed functions in DDES for supersonic base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1585-1593(in Chinese).
    [6] FRÖHLICH J, VON TERZI D. Hybrid LES/RANS methods for the simulation of turbulent flows[J]. Progress in Aerospace Sciences, 2008, 44(5): 349-377. doi: 10.1016/j.paerosci.2008.05.001
    [7] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference on DNS/LES, Advances in DNS/LES. Columbus: Greyden Press, 1997: 137-147.
    [8] STRELETS M. Detached eddy simulation of massively separated flows: AIAA-2001-0879 [R]. Reston: AIAA, 2001.
    [9] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulencemodel[C]//Heatand Mass Transfer 4. Redding: Begell House, 2003: 625-632.
    [10] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195. doi: 10.1007/s00162-006-0015-0
    [11] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]// 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
    [12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [13] DRIVER D M, SEEGMILLER H L. Features of a reattaching turbulent shear layer in divergent channelflow[J]. AIAA Journal, 1985, 23(2): 163-171. doi: 10.2514/3.8890
    [14] 张露, 李杰, 牟永飞, 等. 基于DES类混合方法模拟后台阶分离流动[J]. 西北工业大学学报, 2017, 35(6): 983-989.

    ZHANG L, LI J, MOU Y F, et al. Simulating unsteady flow over a backward facing step with advanced detached-eddy-simulation methods[J]. Journal of Northwestern Polytechnical University, 2017, 35(6): 983-989(in Chinese).
    [15] GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88(3): 431-449. doi: 10.1007/s10494-011-9378-4
    [16] GRITSKEVICH M S, GARBARUK A V, MENTER F R. Fine-tuning of DDES and IDDES formulations to the kω shear stress transport model[J]. Progress in Flight Physics, 2013, 5: 23-42.
    [17] ZHOU L, ZHAO R, YUAN W. An investigation of interface conditions inherent in detached-eddy simulation methods[J]. Aerospace Science and Technology, 2018, 74(3): 46-55.
    [18] SETTLES G S, WILLIAMS D R, BACA B K, et al. Reattachment of a compressible turbulent free shear layer[J]. AIAA Journal, 1982, 20(1): 60-67. doi: 10.2514/3.51047
  • 加载中
图(12)
计量
  • 文章访问数:  1137
  • HTML全文浏览量:  549
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2022-01-21
  • 网络出版日期:  2022-02-10
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答