留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车路耦合荷载下沥青混凝土路面振动响应

董倩 程少锋 张献民 包伊婷

董倩,程少锋,张献民,等. 车路耦合荷载下沥青混凝土路面振动响应[J]. 北京航空航天大学学报,2023,49(9):2385-2394 doi: 10.13700/j.bh.1001-5965.2021.0654
引用本文: 董倩,程少锋,张献民,等. 车路耦合荷载下沥青混凝土路面振动响应[J]. 北京航空航天大学学报,2023,49(9):2385-2394 doi: 10.13700/j.bh.1001-5965.2021.0654
DONG Q,CHENG S F,ZHANG X M,et al. Vibration response of asphalt concrete pavement under vehicle-road coupled load[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2385-2394 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0654
Citation: DONG Q,CHENG S F,ZHANG X M,et al. Vibration response of asphalt concrete pavement under vehicle-road coupled load[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2385-2394 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0654

车路耦合荷载下沥青混凝土路面振动响应

doi: 10.13700/j.bh.1001-5965.2021.0654
基金项目: 国家自然科学基金(51178456);中央高校基本科研业务费(3122017039)
详细信息
    通讯作者:

    E-mail:xmzhang@cauc.edu.cn

  • 中图分类号: U411

Vibration response of asphalt concrete pavement under vehicle-road coupled load

Funds: National Natural Science Foundation of China (51178456); The Fundamental Research Funds for the Central Universities (3122017039)
More Information
  • 摘要:

    为研究沥青混凝土路面的振动特性,采用滤波白噪声法拟合出路面平整度时域模型,基于1/4车辆模型,考虑车辆–道路的耦合作用,分析不同车辆速度、不同路面平整度等级时,车辆对路面的实时动荷载;建立道路三维有限元模型,研究车辆随机动荷载作用下道路的振动响应,分析道路各结构层参数对道路表面中心振动基频的影响。结果表明:路面平整度等级、车辆行驶速度对车–路耦合系统影响显著,当路面平整度等级由A级变化至C级时,同一行驶速度下的车辆动荷载增大了20%;道路振动基频随土基动模量呈对数关系增加,土基动模量由60 MPa增大至260 MPa,道路振动基频由5.61 Hz增大至10.80 Hz,振动基频增幅高达48.06%;在常用动模量变化范围内,面层、基层、垫层的动模量对基频的影响较小;随着面层、基层与垫层厚度的增加,道路基频呈线性减小的趋势,面层厚度对振动频率影响的敏感性大于基层厚度,基层厚度对振动频率影响的敏感性大于垫层厚度;在常用结构层厚度变化范围内,振动基频分别减小9.28%、18.05%与12.75%。试验结果证明:振动基频计算较正确,计算结果可为道路承载力快速测试提供理论支持。

     

  • 图 1  路面平整度时域仿真模型

    Figure 1.  Time domain model of pavement roughness

    图 2  不同等级路面的平整度曲线

    Figure 2.  Pavement roughness of three grades

    图 3  二自由度车辆模型

    Figure 3.  Vehicle model with two-degree-of-freedom

    图 4  A、B、C级路面随机荷载

    Figure 4.  Random load of grade A, B and C

    图 5  道路有限元模型

    Figure 5.  Finite element model of pavement

    图 6  车辆移动荷载加载轨迹

    Figure 6.  loading path of vehicle load

    图 7  路面中心位置处加速度与振动基频

    Figure 7.  Acceleration and fundamental frequency at center of road surface

    图 8  基层厚度H2和动态模量Ed2对基频的影响

    Figure 8.  Effect of base thickness H2 and modulus Ed2 on fundamental frequency

    图 9  垫层厚度H3和动态模量Ed3对基频的影响

    Figure 9.  Effect of cushion thickness H3 and modulus Ed3 on fundamental frequency

    图 10  各结构层厚度-基频回归曲线

    Figure 10.  Thickness-fundamental frequency regression curve of each structural layer

    图 11  不同土基动态模量时频谱曲线

    Figure 11.  Spectrum curve with different dynamic modulus of soil foundation

    图 12  振动基频-土基动态模量回归曲线

    Figure 12.  Regression curve of fundamental frequency-dynamic modulus of soil foundation

    图 13  传感器布置

    Figure 13.  Layout of sensors

    图 14  A1传感器的加速度响应曲线

    Figure 14.  Acceleration response curve at A1 sensor

    表  1  不同等级路面功率谱密度[18]

    Table  1.   Grading standard of road roughness by PSD[18] m2/m−1

    等级下限值几何平均值上限值
    A81632
    B3264128
    C128256512
    D5121 0242 048
    E2 0484 0968 192
    F8 19216 38432 768
    G32 76865 536131 072
    H131 072262 144524 288
    下载: 导出CSV

    表  2  10 t加载车辆参数

    Table  2.   Parameters of truck with 10 tons’ weight

    参数数值
    簧载部分质量m1/kg 4450
    非簧载部分质量m2/kg 550
    簧载部分刚度系数k1/(N·m−1) 1000000
    非簧载部分刚度系数k2/(N·m−1) 1750000
    簧载部分阻尼系数c1/(N·s·m−1) 15000000
    非簧载部分阻尼系数c2/(N·s·m−1) 2000000
    下载: 导出CSV

    表  3  路面结构和材料参数

    Table  3.   Structural and material parameters of road

    结构层厚度/m动态模量/MPa泊松比密度/(kg.m−3)
    沥青混凝土0.2040000.302400
    水泥稳定碎石0.4080000.252200
    二灰稳定碎石0.30 20000.30 2000
    土基91400.35 1900
    下载: 导出CSV

    表  4  不同深度处振动基频及幅值

    Table  4.   Fundamental frequencies and amplitudes at different depths

    y/m振动
    基频
    /Hz
    幅值/0.1g
    9.96.080.014
    9.76.080.013
    9.36.080.013
    9.06.080.013
    7.06.080.010
    5.06.080.009
    3.06.080.007
    1.06.080.004
    下载: 导出CSV

    表  5  不同道面参数时的振动基频

    Table  5.   Fundamental frequencies under different pavement parameters

    面层


    /m
    面层


    /MPa
    振动


    /Hz
    面层


    /m
    面层


    /MPa
    振动


    /Hz
    0.14 3 500 6.57 0.20 3 500 6.08
    4 000 6.58 4 000 6.08
    4 500 6.58 4 500 6.08
    5 000 6.58 5 000 6.09
    5 500 6.59 5 500 6.09
    0.16 3 500 6.40 0.22 3 500 5.96
    4 000 6.40 4 000 5.96
    4 500 6.40 4 500 5.97
    5 000 6.40 5 000 5.98
    5 500 6.41 5 500 5.98
    0.18 3 500 6.26
    4 000 6.26
    4 500 6.27
    5 000 6.27
    5 500 6.27
    下载: 导出CSV

    表  6  不同土基动态模量下道路基频

    Table  6.   Fundamental frequency under different soil foundation dynamic moduli

    土基动态模量/MPa 基频/Hz 土基动态模量/MPa 基频/Hz
    60 5.61 180 9.10
    100 7.01 220 9.88
    140 8.19 260 10.80
    下载: 导出CSV

    表  7  道路结构及参数

    Table  7.   Structures and Parameters of road

    结构层静态模量
    /MPa
    动态模量
    /MPa
    厚度
    /m
    密度
    /
    (kg·m−3
    沥青混凝土面层 200048900.22400
    水泥稳定碎石基层50007893.030.42200
    二灰稳定碎石底基层80010980.3 2000
    土基55167 1900
    下载: 导出CSV

    表  8  道路振动基频

    Table  8.   Fundamental frequencies of test road

    传感器振动基频/Hz 传感器振动基频/Hz
    A18.74 A48.64
    A28.64A58.64
    A38.74A68.74
    下载: 导出CSV
  • [1] WANG H, XIE P Y, JI R, et al. Prediction of airfield pavement responses from surface deflections: Comparison between the traditional backcalculation approach and the ANN model[J]. Road Materials and Pavement Design, 2021, 22(9): 1930-1945. doi: 10.1080/14680629.2020.1733638
    [2] TAREFDER R A, AHMED M U. Modeling of the FWD deflection basin to evaluate airport pavements[J]. International Journal of Geomechanics, 2014, 14(2): 205-213. doi: 10.1061/(ASCE)GM.1943-5622.0000305
    [3] HAMIM A, YUSOFF N I M, CEYLAN H, et al. Comparative study on using static and dynamic finite element models to develop FWD measurement on flexible pavement structures[J]. Construction and Building Materials, 2018, 176: 583-592. doi: 10.1016/j.conbuildmat.2018.05.082
    [4] LI M Y, WANG H. Prediction of asphalt pavement responses from FWD surface deflections using soft computing methods[J]. Journal of Transportation Engineering Part B-Pavements, 2018, 144(2): 04018014. doi: 10.1061/JPEODX.0000044
    [5] LI M Y, WANG H. Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters[J]. International Journal of Pavement Engineering, 2019, 20(4): 490-498. doi: 10.1080/10298436.2017.1309197
    [6] LAJNEF N, RHIMI M, CHATTI K, et al. Toward an integrated smart sensing system and data interpretation techniques for pavement fatigue monitoring[J]. Computer-Aided Civil and Infrastructure Engineering, 2011, 26(7): 513-523. doi: 10.1111/j.1467-8667.2010.00712.x
    [7] SKAR A, KLAR A, LEVENBERG E. Load-independent characterization of plate foundation support using high-resolution distributed fiber-optic sensing[J]. Sensors, 2019, 19(16): 3518. doi: 10.3390/s19163518
    [8] NIELSEN J, LEVENBERG E, SKAR A. Inference of pavement properties with roadside accelerometers[C]//Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements. Berlin: Springer, 2020: 719-728.
    [9] 董倩. 基于飞机滑行刚性道面位移场的跑道承载力研究[D]. 天津: 中国民航大学, 2013.

    DONG Q. Studies on carrying capacity of rigid pavement based on displacement field in conditions of aircraft taxing[D]. Tianjin: Civil Aviation University of China, 2013 (in Chinese).
    [10] RYYNÄNEN T, PELLINEN T, BELT J. The use of accelerometers in the pavement performance monitoring and analysis[J]. IOP Conference Series:Materials Science and Engineering, 2010, 10: 012110. doi: 10.1088/1757-899X/10/1/012110
    [11] ARRAIGADA M, PARTL M N, ANGELONE S M, et al. Evaluation of accelerometers to determine pavement deflections under traffic loads[J]. Materials and Structures, 2009, 42(6): 779-790. doi: 10.1617/s11527-008-9423-5
    [12] 张存巍. 基于车辆和道路结构耦合振动的道路振动频率研究[D]. 天津: 中国民航大学, 2016.

    ZHANG C W. Studies on road surface vibration frequency based on vehicle-road coupling vibration system[D]. Tianjin: Civil Aviation University of China, 2016 (in Chinese).
    [13] 薛海, 李强. 地铁车辆天线梁振动加速度及动应力试验[J]. 北京交通大学学报, 2015, 39(4): 33-36.

    XUE H, LI Q. Test study on vibration and dynamic stress of subway vehicle’s antenna beam[J]. Journal of Beijing Jiaotong University, 2015, 39(4): 33-36(in Chinese).
    [14] 张献民, 胡鹏. 随机荷载作用下刚性路面动态响应研究[J]. 振动与冲击, 2015, 34(19): 126-130.

    ZHANG X M, HU P. Dynamic response of a rigid pavement under random loads[J]. Journal of Vibration and Shock, 2015, 34(19): 126-130(in Chinese).
    [15] 殷珺, 陈辛波, 吴利鑫, 等. 滤波白噪声路面时域模拟方法与悬架性能仿真[J]. 同济大学学报(自然科学版), 2017, 45(3): 398-407. doi: 10.11908/j.issn.0253-374x.2017.03.014

    YIN J, CHEN X B, WU L X, et al. Simulation method of road excitation in time domain using filtered white noise and dynamic analysis of suspension[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 398-407(in Chinese). doi: 10.11908/j.issn.0253-374x.2017.03.014
    [16] 雷继超, 石鑫刚, 蔡良才, 等. 滤波白噪声法的单轮起落架滑跑模型[J]. 空军工程大学学报(自然科学版), 2020, 21(3): 12-18.

    LEI J C, SHI X G, CAI L C, et al. A quarter landing gear taxiing model based on filtered white noise method[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(3): 12-18(in Chinese).
    [17] 中华人民共和国机械工业部. 机械振动 道路路面谱测量数据报告: GB/T 7031-2005[S]. 北京: 中国质检出版社, 1995.

    Ministry of Machine-Building and Electronics Industry. Mechanical vibration-road surface profiles-reporting of measured data: GB/T 7031-2005[S]. Beijing: China Quality Inspection Press, 1995(in Chinese).
    [18] 赵济海, 王哲人, 关朝雳. 路面不平度的测量分析与应用[M]. 北京: 北京理工大学出版社, 2000.

    ZHAO J H, WANG Z R, GUAN C L. Measurement analysis and application of road roughness[M]. Beijing: Beijing Insititute of Technology Press, 2000(in Chinese).
    [19] 周玉民, 谈至明, 刘伯莹. 1/4车-路耦合动力学模型研究[J]. 同济大学学报(自然科学版), 2012, 40(3): 408-413.

    ZHOU Y M, TAN Z M, LIU B Y. Quarter vehicle-road coupling dynamics models[J]. Journal of Tongji University (Natural Science), 2012, 40(3): 408-413(in Chinese).
    [20] 李倩, 刘俊卿. 基于车-路相互作用的沥青路面平整度劣化研究[J]. 振动与冲击, 2018, 37(6): 76-81.

    LI Q, LIU J Q. Asphalt pavement evenness deterioration analysis based on the vehicle-pavement interaction[J]. Journal of Vibration and Shock, 2018, 37(6): 76-81(in Chinese).
    [21] 孔伟斌. 行车荷载作用下路面结构动态响应敏感性分析[J]. 北方交通, 2017(3): 87-90.

    KONG W B. The analysis on pavement structure dynamic response sensitivity under the action of vehicle load[J]. Northern Communications, 2017(3): 87-90(in Chinese).
    [22] 沙爱民, 胡力群. 半刚性基层材料的结构特征[J]. 中国公路学报, 2008, 21(4): 1-5.

    SHA A M, HU L Q. Structural characteristics of semi-rigid base course material[J]. China Journal of Highway and Transport, 2008, 21(4): 1-5(in Chinese).
    [23] 曾胜. 路面性能评价与分析方法研究[D]. 长沙: 中南大学, 2003.

    ZENG S. Research on the pavement performance evaluation and analyze methods[D]. Changsha: Central South University, 2003(in Chinese).
    [24] 中华人民共和国交通运输部. 公路沥青路面设计规范: JTG D50—2017[S]. 北京: 人民交通出版社, 2017.

    Ministry of Tran Sport of the People's Republic of China. Specifications for design of highway asphalt pavement: JTG D50—2017[S]. Beijing: China Communications Press, 2017 (in Chinese).
    [25] 张献民, 张存巍, 张靖. 水泥混凝土面层结构的振动响应试验研究[J]. 公路交通科技, 2016, 33(9): 1-6. doi: 10.3969/j.issn.1002-0268.2016.09.001

    ZHANG X M, ZHANG C W, ZHANG J. Experimental study on vibration response of cement concrete pavement surface course[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 1-6(in Chinese). doi: 10.3969/j.issn.1002-0268.2016.09.001
    [26] 程少锋. 基于道路振动频率快速检测道面承载能力的研究[D]. 天津: 中国民航大学, 2018.

    CHENG S F. Research on fast detection of pavement bearing capacity based on vibration frequency[D]. Tianjin: Civil Aviation University of China, 2018(in Chinese).
    [27] 卢正, 王长柏, 付建军, 等. 交通荷载作用下公路路基工作区深度研究[J]. 岩土力学, 2013, 34(2): 316-321.

    LU Z, WANG C B, FU J J, et al. Research on influence depth of road subgrade induced by vehicle loads[J]. Rock and Soil Mechanics, 2013, 34(2): 316-321(in Chinese).
    [28] 付梓君. 车—路耦合作用下沥青路面振动规律及能量谱表征研究[D]. 西安: 长安大学, 2018.

    FU Z J. Study on the vibration regularity and energy spectrum characterization of asphalt pavement under the coupling of vehicles and roads[D]. Xi’an: Changan University, 2018 (in Chinese).
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  103
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 录用日期:  2022-01-21
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答