留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四旋翼无人机的自适应故障诊断与估计

王莉娜 刘贞报 院金彪 党庆庆 江飞鸿 王宝栋

王莉娜,刘贞报,院金彪,等. 四旋翼无人机的自适应故障诊断与估计[J]. 北京航空航天大学学报,2023,49(9):2395-2405 doi: 10.13700/j.bh.1001-5965.2021.0656
引用本文: 王莉娜,刘贞报,院金彪,等. 四旋翼无人机的自适应故障诊断与估计[J]. 北京航空航天大学学报,2023,49(9):2395-2405 doi: 10.13700/j.bh.1001-5965.2021.0656
WANG L N,LIU Z B,YUAN J B,et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2395-2405 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0656
Citation: WANG L N,LIU Z B,YUAN J B,et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2395-2405 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0656

四旋翼无人机的自适应故障诊断与估计

doi: 10.13700/j.bh.1001-5965.2021.0656
基金项目: 国家自然科学基金(61672430);国家留学基金创新型人才国际合作培养项目(201906290246);航空科学基金(ASFC-2018ZC53026);陕西省重点研发计划(2019ZDLGY14-02-010);深圳市基础研究资助项目(JCYJ20190806152203506);深圳市高等院校稳定支持计划(GXWD202012311 65807008,20200830220334001);北京空间飞行器总体设计部项目(JSZL2020203B004)
详细信息
    作者简介:

    王莉娜等:四旋翼自适应故障诊断与估计 11

    通讯作者:

    E-mail:lena@mail.nwpu.edu.cn

  • 中图分类号: V279;V241

Adaptive fault diagnosis and estimation for quadrotor UAV

Funds: National Natural Science Foundation of China (61672430); China Scholarship Fund International Cooperation Training Program for Innovative Talents (201906290246);Aeronautical Science Foundation of China (ASFC-2018ZC53026); Key R & D Program of Shaanxi Province (2019ZDLGY14-02-010); Shenzhen Fundamental Research Program (JCYJ20190806152203506); Shenzhen Basic Research Funding Project (GXWD202012311 65807008, 20200830220334001); Beijing Institute of Space Systems Engineering (JSZL2020203B004)
More Information
  • 摘要:

    针对四旋翼无人机执行器常见故障,提出一种基于自适应技术和观测器的鲁棒故障检测和估计(FDE)方法。在故障检测阶段,设计非线性诊断观测器,通过解析函数推导出阈值,确保所提检测方法的鲁棒性,并对所设计的观测器和残差评估函数进行证明。在故障估计阶段,提出基于切换ρ-修正的自适应律来准确估计检测到故障的方案。该方案不仅能够同时估计系统状态和残差信号,而且能估计未知故障的特征和大小。通过线性矩阵不等式进行设计参数的计算。利用2种故障场景分别进行仿真验证,同时在4种情况下讨论所提方法的有效性。基于四旋翼无人机硬件在环实验台验证了所提方法的可行性。

     

  • 图 1  四旋翼无人机布局

    Figure 1.  Quadrotor UAV layout diagram

    图 2  四旋翼无人机控制模式

    Figure 2.  Quadrotor UAV control model

    图 3  场景1下验证本文方法

    Figure 3.  Verify Droposed method in scenario 1

    图 4  场景2下验证本文方法

    Figure 4.  Proposed method verification in scenario 2

    图 5  故障和模型不确定性存在情况下的方法验证

    Figure 5.  Scheme verification in the presence of fault and model uncertainties

    图 6  故障和测量不确定性存在情况下的方法验证

    Figure 6.  Scheme verification in the presence of fault and measurement uncertainty

    图 7  基于文献[11]中方法的故障估计

    Figure 7.  Fault estimation based on method in literature[11]

    图 8  四旋翼无人机硬件在环仿真框图

    Figure 8.  Quadrotor UAV HILS diagram

    图 9  计算机之间的关系

    Figure 9.  Connection between computers

    图 10  3个分量上的故障诊断和自适应阈值

    Figure 10.  Fault diagnosis result

    图 11  故障估计结果

    Figure 11.  Fault estimation result

    表  1  本文方法与文献[11]中方法比较

    Table  1.   Performances of proposed method and reported approach of literature [11]

    方法 场景1故障诊断时间/s 场景2故障诊断时间/s 场景1的MSE 场景2的MSE
    本文方法 15.2 10.25 6.6721×10−4 3.8211×10−4
    文献[11]中的方法 15.5 10.5 5.1245 3.5828
    下载: 导出CSV
  • [1] 全权. 多旋翼飞行器设计与控制[M]. 北京: 电子工业出版社, 2018: 70-85.

    QUAN Q. Design and control of multi-rotor aircraft[M]. Beijing: Publishing House of Electronics Industry Press, 2018: 70-85 (in Chinese).
    [2] ZHANG Y M, CHAMSEDDINE A, RABBATH C A, et al. Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed[J]. Journal of the Franklin Institute, 2013, 350(9): 2396-2422. doi: 10.1016/j.jfranklin.2013.01.009
    [3] 申富媛, 李炜. 四旋翼无人机执行器可重构性量化评价方法研究[J]. 北京航空航天大学学报, 2020, 46(11): 2077-2086.

    SHEN F Y, LI W. Quantitative reconfigurability evaluation method of actuator for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2077-2086(in Chinese).
    [4] 刘贞报, 马博迪, 高红岗, 等. 基于形态自适应网络的无人机目标跟踪方法[J]. 航空学报, 2021, 42(4): 524904.

    LIU Z B, MA B D, GAO H G, et al. Adaptive morphological network based UAV target tracking algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524904(in Chinese).
    [5] AMOOZGAR M H, CHAMSEDDINE A, ZHANG Y M. Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 107-117.
    [6] 权璐, 姜斌, 杨蒲. 基于神经网络滑模观测器的飞控系统故障诊断[J]. 扬州大学学报(自然科学版), 2019, 22(2): 51-55.

    QUAN L, JIANG B, YANG P. Research on fault diagnosis algorithm of flight control system based on neural network sliding mode observer[J]. Journal of Yangzhou University (Natural Science Edition), 2019, 22(2): 51-55(in Chinese).
    [7] ZHANG K, JIANG B, SHI P. Fast fault estimation and accommodation for dynamical systems[J]. IET Control Theory & Applications, 2009, 3(2): 189-199.
    [8] 杨荟憭, 姜斌, 张柯. 四旋翼直升机姿态系统的直接自修复控制[J]. 控制理论与应用, 2014, 31(8): 1053-1060.

    YANG H L, JIANG B, ZHANG K. Direct self-repairing control for four-rotor helicopter attitude systems[J]. Control Theory & Applications, 2014, 31(8): 1053-1060(in Chinese).
    [9] AVRAM R C, ZHANG X D, MUSE J. Nonlinear adaptive fault-tolerant quadrotor altitude and attitude tracking with multiple actuator faults[J]. IEEE Transactions on Control Systems Technology, 2018, 26(2): 701-707. doi: 10.1109/TCST.2017.2670522
    [10] FREEMAN P, PANDITA R, SRIVASTAVA N, et al. Model-based and data-driven fault detection performance for a small UAV[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1300-1309. doi: 10.1109/TMECH.2013.2258678
    [11] ZHANG J A, SWAIN A K, NGUANG S K. Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems[J]. Asian Journal of Control, 2015, 17(4): 1296-1309. doi: 10.1002/asjc.987
    [12] 王发威, 董新民, 陈勇, 等. 多操纵面飞机舵面损伤的快速故障诊断[J]. 航空学报, 2015, 36(7): 2350-2360.

    WANG F W, DONG X M, CHEN Y, et al. Fast fault diagnosis of multi-effectors aircraft with control surface damage[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2350-2360(in Chinese).
    [13] HAJIYEV C, SOKEN H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults[J]. Aerospace Science and Technology, 2013, 28(1): 376-383. doi: 10.1016/j.ast.2012.12.003
    [14] 李娟, 周东华, 司小胜, 等. 微小故障诊断方法综述[J]. 控制理论与应用, 2012, 29(12): 1517-1529.

    LI J, ZHOU D H, SI X S, et al. Review of incipient fault diagnosis methods[J]. Control Theory & Applications, 2012, 29(12): 1517-1529(in Chinese).
    [15] TAN C P, EDWARDS C. Sliding mode observers for detection and reconstruction of sensor faults[J]. Automatica, 2002, 38(10): 1815-1821. doi: 10.1016/S0005-1098(02)00098-5
    [16] CEN Z H, NOURA H, SUSILO T B, et al. Robust fault diagnosis for quadrotor UAVs using adaptive thau observer[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1): 573-588.
    [17] LIU C, JIANG B, ZHANG K. Incipient fault detection using an associated adaptive and sliding-mode observer for quadrotor helicopter attitude control systems[J]. Circuits Systems and Signal Processing, 2016, 35(10): 3555-3574. doi: 10.1007/s00034-015-0229-8
    [18] CHEN W T, SAIF M. Unknown input observer design for a class of nonlinear systems: An LMI approach[C]//2006 American Control Conference. Piscataway: IEEE Press, 2006.
    [19] WU Y K, JIANG B, ZHOU D H, et al. ToMFIR-based detection and estimation for incipient actuator faults in a class of closed-loop nonlinear systems[J]. IFAC Proceedings Volumes, 2014, 47(3): 1096-1101. doi: 10.3182/20140824-6-ZA-1003.01095
    [20] TANG Y, LI Y. Dynamic modeling for high-performance controller design of a UAV quadrotor[C]//IEEE International Conference on Information and Automation. Piscataway: IEEE Press, 2015: 3112-3117.
    [21] ZHANG K, JIANG B, YAN X G, et al. Incipient fault detection based on robust threshold generators: A sliding mode interval estimation approach[J]. IFAC-Papers, 2017, 50(1): 5067-5672. doi: 10.1016/j.ifacol.2017.08.953
    [22] KE Y J, WANG K L, CHEN B M. Design and implementation of a hybrid UAV with model-based flight capabilities[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1114-1125. doi: 10.1109/TMECH.2018.2820222
    [23] SUN C Y, YIN Y Z, MA H J. A dynamic fault detection method for nonlinear process[C]//2021 IEEE 10th Data Driven Control and Learning Systems Conference. Piscataway: IEEE Press, 2021: 108-113.
    [24] 尹艳辉, 王付永, 刘忠信, 等. 带有完全分布式观测器的多智能体系统自适应容错一致性[J]. 控制理论与应用, 2021, 38(7): 1082-1090.

    YIN Y H, WANG F Y, LIU Z X, et al. Fully distributed observer-based adaptive fault-tolerant consensus control for multi-agent systems[J]. Control Theory & Applications, 2021, 38(7): 1082-1090(in Chinese).
    [25] ZHANG J Q, REN Z H, DENG C, et al. Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs[J]. Nonlinear Dynamics, 2019, 97(1): 609-627. doi: 10.1007/s11071-019-05002-9
    [26] EDWARDS C, TAN C P. A comparison of sliding mode and unknown input observers for fault reconstruction[J]. European Journal of Control, 2006, 12(3): 245-260. doi: 10.3166/ejc.12.245-260
    [27] NIAN X H, CHEN W Q, CHU X Y, et al. Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems[J]. International Journal of Control, 2020, 93(3): 725-737. doi: 10.1080/00207179.2018.1484573
    [28] AVRAM R C, ZHANG X D, MUSE J. Quadrotor actuator fault diagnosis and accommodation using nonlinear adaptive estimators[J]. IEEE Transactions on Control Systems Technology, 2017, 25(6): 2219-2226. doi: 10.1109/TCST.2016.2640941
    [29] TANG Y R, LI Y M. Dynamic modeling for high-performance controller design of a UAV quadrotor[C]//2015 IEEE International Conference on Information and Automation. Piscataway: IEEE Press, 2015: 3112-3117.
    [30] DING S X. Model-based fault diagnosis techniques: Design schemes, algorithms and tools[M]. Berlin: Springer, 2013: 80-152.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1269
  • HTML全文浏览量:  75
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-03-18
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答