留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新冠疫情背景下航空物流网络的鲁棒优化

张锦 张哲睿 洪治潮 杨文广 闫妍

张锦,张哲睿,洪治潮,等. 新冠疫情背景下航空物流网络的鲁棒优化[J]. 北京航空航天大学学报,2023,49(9):2218-2226 doi: 10.13700/j.bh.1001-5965.2021.0664
引用本文: 张锦,张哲睿,洪治潮,等. 新冠疫情背景下航空物流网络的鲁棒优化[J]. 北京航空航天大学学报,2023,49(9):2218-2226 doi: 10.13700/j.bh.1001-5965.2021.0664
ZHANG J,ZHANG Z R,HONG Z C,et al. Robust optimization of aviation logistics network in context of COVID-19 pandamic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2218-2226 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0664
Citation: ZHANG J,ZHANG Z R,HONG Z C,et al. Robust optimization of aviation logistics network in context of COVID-19 pandamic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2218-2226 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0664

新冠疫情背景下航空物流网络的鲁棒优化

doi: 10.13700/j.bh.1001-5965.2021.0664
详细信息
    通讯作者:

    E-mail:zhjswjtu@home.swjtu.edu.cn

  • 中图分类号: V221+.3;TB553

Robust optimization of aviation logistics network in context of COVID-19 pandamic

More Information
  • 摘要:

    为应对新冠疫情影响背景下客机航线中断导致客机腹舱运力减少的风险,以最小的成本提升航空物流网络的鲁棒性,提出不确定客机腹舱运力情境下全货机航线配机及路径优化问题研究。以网络总成本最小化为目标,考虑“客机腹舱+全货机”的运输方式、城市间的航空货运需求、运输距离等因素,建立了客机腹舱运力不确定环境下航空物流网络鲁棒优化模型,并采用列与约束生成(C&CG)算法对模型进行有效求解。通过S货运航空公司案例数据,研究航空物流网络航线优化布局问题。通过案例分析证明,运用两阶段鲁棒优化方法,可有效降低航空物流网络受客机腹舱运力减少导致的成本变动;在客机航线完全中断的状况下,所提方案可以降低航空物流网络20.7%的成本。运用两阶段鲁棒优化方法有利于决策者灵活进行全货机配机选线,在客机腹舱运力不确定影响背景下兼顾航空物流网络的经济性和鲁棒性。

     

  • 图 1  不确定客机腹舱运力下货机航线路径优化

    Figure 1.  Route optimization of cargo aircraft under uncertainty for capacity of passenger aircraft bellies

    图 2  C&CG算法迭代次数相关的收敛过程

    Figure 2.  Convergence process related to number of iterations of C&CG algorithm

    图 3  Benders分解法迭代次数相关的收敛过程

    Figure 3.  Convergence process related to number of iterations of Benders algorithm

    图 4  $\zeta $为0、0.1和0.2时各航空物流网络成本比较

    Figure 4.  Comparison of cost of each aviation logistics network plan when $\zeta $ is 0, 0.1 and 0.2 respectively

    图 5  $\zeta $为0.8、0.9和1时各航空物流网络成本比较

    Figure 5.  Comparison of cost of each aviation logistics network plan when $\zeta $ is 0.8, 0.9 and 1 respectively

    图 6  $\zeta $为0、0.5和1时各航空物流网络成本比较

    Figure 6.  Comparison of cost of each aviation logistics network plan when $\zeta $ is 0, 0.5 and 1 respectively

    表  1  算法性能对比结果

    Table  1.   Algorithm performance comparison result

    算法$\varGamma$迭代次数${\text{gap}}$/%${\text{UB}}$/104时间/s
    Benders算法018406033600
    514626903600
    1014518313600
    1515498113600
    C&CG算法0105410.8
    5240640840
    103906643367
    15170666 1987
    下载: 导出CSV

    表  2  不同不确定预算水平下求解的航线网络方案

    Table  2.   Route network solutions under different uncertain budget levels

    方案Γ货机航线路径
    1 0 ①3-0-8-3;②3-2-5-3;③4-2-8-4;
    ④3-7-0-3;⑤3-0-9-3;⑥3-0-7-3;
    2 5 ①3-9-0-3;②3-0-7-3;③3-0-8-3;
    ④3-2-5-3;⑤3-6-3;⑥3-0-9-3;
    ⑦4-2-8-4;⑧4-1-0-4;
    3 10 ①3-4-3;②3-7-0-3;③4-1-0-4;
    ④3-9-2-3;⑤3-6-3;⑥3-0-8-3;
    ⑦4-2-8-4;⑧3-0-9-3;⑨3-0-7-3;
    ⑩3-2-5-3;
    4 15 ①4-7-0-4;②3-5-2-3;③3-6-3;
    ④3-9-0-3;⑤3-7-1-3;⑥3-0-8-3;
    ⑦3-4-3;⑧4-1-7-4;⑨3-2-5-3;
    ⑩3-0-9-3;⑪3-0-7-3;⑫4-2-8-4;
    5 20 ①4-7-0-4;②3-5-2-3;③3-6-3;
    ④3-9-0-3;⑤3-7-1-3;⑥3-0-8-3;
    ⑦3-4-3;⑧4-1-7-4;⑨3-2-5-3;
    ⑩3-0-9-3;⑪3-0-7-3;⑫4-2-8-4;
    下载: 导出CSV
  • [1] DU W, ZHOU X, LORDAN O, et al. Analysis of the Chinese airline network as multi-layer networks[J]. Transportation Research Part E:Logistics and Transportation Review, 2016, 89: 108-116. doi: 10.1016/j.tre.2016.03.009
    [2] O‘KELLY M E. A quadratic integer program for the location of interacting hub facilities[J]. European Journal of Operational Research, 1987, 32(3): 393-404. doi: 10.1016/S0377-2217(87)80007-3
    [3] ZHANG J, YAN Y, TANG Q Y. Hub location of air cargo company in air alliance[J]. Journal of Southeast University (English Edition), 2020, 36(3): 341-348.
    [4] YAN Y, ZHANG J, TANG Q Y. Aircraft fleet route optimization based on cost and low carbon emission in aviation line alliance network[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(1): 1163-1182.
    [5] YU S N, YANG Z Z, YU B. Air express network design based on express path choices: Chinese case study[J]. Journal of Air Transport Management, 2017, 61: 73-80. doi: 10.1016/j.jairtraman.2016.04.008
    [6] 高娇蛟. 我国快递企业航空运输网络的优化设计研究[D]. 北京: 北京交通大学, 2011: 40-46.

    GAO J J. Research on optimization design of air transport network of express enterprises in China[D]. Beijing: Beijing Jiaotong University, 2011: 40-46(in Chinese).
    [7] CHENG C, QI M, ZHANG Y, et al. A two-stage robust approach for the reliable logistics network design problem[J]. Transportation Research Part B:Methodological, 2018, 111: 185-202. doi: 10.1016/j.trb.2018.03.015
    [8] LING A, SUN J, XIU N, et al. Robust two-stage stochastic linear optimization with risk aversion[J]. European Journal of Operational Research, 2017, 256(1): 215-229. doi: 10.1016/j.ejor.2016.06.017
    [9] MARTINS D S, MORABITO R, CAMARGO R S. Benders decomposition applied to a robust multiple allocation incomplete hub location problem[J]. Computers & Operations Research, 2018, 89: 31-50.
    [10] 梁金鹏, 不确定条件下的城市轨道交通客流控制策略及接驳公交网络优化研究[D]. 北京: 北京交通大学, 2020: 85-96.

    LIANG J P. Research on passenger flow control policy and bus bridging service optimization under uncertainty in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2020: 85-96(in Chinese).
    [11] WANG Z, QI M. Robust service network design under demand uncertainty[J]. Transportation Science, 2020, 54(3): 676-689. doi: 10.1287/trsc.2019.0935
    [12] 陈焕平. 内支线集装箱班轮航线鲁棒优化模型[D]. 大连: 大连海事大学, 2020: 26-30.

    CHEN H P. Robust optimization model of container liner routes in feeder line network[D]. Dalian: Maritime Affairs University of Dalian, 2020: 26-30(in Chinese).
    [13] 姜涛. 航空公司中枢辐射航线网络鲁棒优化设计问题研究[D]. 南京: 南京航空航天大学, 2007.

    JIANG T. Research on the robust optimization design of airline’s hub and radial route network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
    [14] 张冲. 航空联盟网络设计与优化研究[D]. 南京: 南京航空航天大学, 2019: 40-49.

    ZHANG C. Research on design and optimization of aviation alliance network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 40-49(in Chinese).
    [15] BERTSIMAS D, SIM M. Robust discrete optimization and network flows[J]. Mathematical Programming, 2003, 98(1-3): 49-71. doi: 10.1007/s10107-003-0396-4
    [16] GABREL V, LACROIX M, MURAT C, et al. Robust location transportation problems under uncertain demands[J]. Discrete Applied Mathematics, 2014, 164: 100-111.
    [17] ZENG B, ZHAO L. Solving two-stage robust optimization problems using a column-and-constraint generation method[J]. Operations Research Letters, 2013, 41(5): 457-461. doi: 10.1016/j.orl.2013.05.003
    [18] 闫妍, 马啸来. 航线联营下基于转运的飞机航线路径优化[J]. 北京航空航天大学学报, 2023, 49(1): 115-127. doi: 10.13700/j.bh.1001-5965.2021.0166

    YAN Y, MA X L. Air freight route planning based on transshipment under air alliance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 115-127(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0166
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  551
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 录用日期:  2022-02-19
  • 网络出版日期:  2022-03-18
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答