留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种历史信息特征敏感的行人迭代检测方法

戴佩哲 刘翔 张星 尚岩峰 赵静文 王诗雨

戴佩哲,刘翔,张星,等. 一种历史信息特征敏感的行人迭代检测方法[J]. 北京航空航天大学学报,2023,49(9):2493-2500 doi: 10.13700/j.bh.1001-5965.2021.0665
引用本文: 戴佩哲,刘翔,张星,等. 一种历史信息特征敏感的行人迭代检测方法[J]. 北京航空航天大学学报,2023,49(9):2493-2500 doi: 10.13700/j.bh.1001-5965.2021.0665
DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0665
Citation: DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0665

一种历史信息特征敏感的行人迭代检测方法

doi: 10.13700/j.bh.1001-5965.2021.0665
基金项目: 国家重点研发计划(2017YFC0821603);上海市自然科学基金(19ZR1421500)
详细信息
    通讯作者:

    E-mail:xliu@sues.edu.cn

  • 中图分类号: TP391.4

An iterative pedestrian detection method sensitive to historical information features

Funds: National Key R&D Program of China (2017YFC0821603); Natural Science Foundation of Shanghai (19ZR1421500)
More Information
  • 摘要:

    基于深度学习的目标检测算法通常需要使用非极大值抑制等后处理方法对预测框进行筛选,无法在行人拥挤的场景下平衡模型的检测精度和召回率。虽然迭代检测的方法可以解决非极大值抑制等方法带来的问题,但是重复检测同样会限制模型的性能。提出了一种历史信息特征敏感的行人迭代检测方法。引入带权重的历史信息特征(WHIC),提高特征的区分度;利用历史信息特征提取模块(HIFEM)得到不同尺度的历史信息特征,并融合进主网络中进行多尺度检测,增强了模型对历史信息特征的敏感度,有效抑制重复检测框的产生。实验结果表明:所提方法在拥挤场景的行人检测数据集CrowdHuman和WiderPerson上取得了最优的检测精度和召回率。

     

  • 图 1  IterDet迭代网络结构

    Figure 1.  Structure of IterDet iterative network

    图 2  IterDet 2次检测得到的检测框展示

    Figure 2.  Display of detection box for two tests of IterDet

    图 3  HIFEM网络结构

    Figure 3.  Network structure of HIFEM

    图 4  检测效果

    Figure 4.  Detection effect

    表  1  HIFEM网络参数

    Table  1.   Parameters of HIFEM

    层名称输出尺寸层参数
    conv1 $ 112 \times 112 $ $ 7 \times 7 $, 64, stride 2
    conv2_x $ 56 \times 56 $ $ 3 \times 3 $ max pool, stride 2
    $\left( {\begin{array}{*{20}{c} } {3 \times 3,}&{256} \\ {3 \times 3,}&{256} \end{array} } \right) \times 2$
    conv3_x $ 28 \times 28 $ $\left( {\begin{array}{*{20}{c} } {3 \times 3,}&{512} \\ {3 \times 3,}&{512} \end{array} } \right) \times 2$
    conv4_x $ 14 \times 14 $ $\left( {\begin{array}{*{20}{c} } {3 \times 3,}&{1\;024} \\ {3 \times 3,}&{1\;024} \end{array} } \right) \times 2$
    下载: 导出CSV

    表  2  CrowdHuman数据集上基于RetinaNet+IterDet的权重系数实验结果

    Table  2.   Experimental results of weight coefficient based on RetinaNet+IterDet on CrowdHuman dataset

    轻度遮挡
    权重系数
    中度遮挡
    权重系数
    重度遮挡
    权重系数
    召回率检测精度平均重复
    检测框个数
    91.4984.7711.89
    24692.3985.458.87
    481293.2685.598.56
    6121892.1385.168.59
    8162488.1985.117.18
    10203080.7681.136.12
    下载: 导出CSV

    表  3  CrowdHuman数据集上基于Faster R-CNN+IterDet的权重系数实验结果

    Table  3.   Experimental results of weight coefficient based on Faster R-CNN+IterDet on CrowdHuman dataset

    轻度遮挡
    权重系数
    中度遮挡
    权重系数
    重度遮挡
    权重系数
    召回率检测精度平均重复
    检测框个数
    95.8088.088.45
    24696.1489.187.34
    481296.5489.566.12
    6121896.3488.655.06
    8162495.1685.175.12
    10203090.4683.144.06
    下载: 导出CSV

    表  4  WiderPerson数据集上基于RetinaNet+IterDet的权重系数实验结果

    Table  4.   Experimental results of weight coefficient based on RetinaNet+IterDet on WiderPerson dataset

    轻度遮挡
    权重系数
    中度遮挡
    权重系数
    重度遮挡
    权重系数
    召回率检测精度平均重复
    检测框个数
    95.3590.238.66
    24695.4491.597.15
    481296.1392.436.21
    6121895.8991.876.34
    8162490.1488.565.22
    10203088.1985.345.12
    下载: 导出CSV

    表  5  WiderPerson数据集上基于Faster R-CNN+IterDet的权重系数实验结果

    Table  5.   Experimental results of weight coefficient based on Faster R-CNN+IterDet on WiderPerson dataset

    轻度遮挡
    权重系数
    中度遮挡
    权重系数
    重度遮挡
    权重系数
    召回率检测精度平均重复
    检测框个数
    97.1591.955.65
    24697.1692.594.49
    481297.6093.144.45
    6121894.1790.154.19
    8162490.2388.714.01
    10203088.5984.883.67
    下载: 导出CSV

    表  6  CrowdHuman数据集上的消融实验结果

    Table  6.   Ablation experimental results on CrowdHuman dataset

    检测器召回率 检测精度 平均重复检测框个数
    IterDetIterDet+HIFEMIterDetIterDet+HIFEMIterDetIterDet+HIFEM
    RetinaNet91.4996.76 84.7788.98 11.893.34
    Faster R-CNN95.8097.1088.0891.108.452.21
    下载: 导出CSV

    表  7  WiderPerson数据集上的消融实验结果

    Table  7.   Ablation experimental results on WiderPerson dataset

    检测器召回率 检测精度 平均重复检测框个数
    IterDetIterDet+HIFEMIterDetIterDet+HIFEMIterDetIterDet+HIFEM
    RetinaNet95.3597.60 90.2394.70 8.664.12
    Faster R-CNN97.1598.23 91.9595.40 5.651.81
    下载: 导出CSV

    表  8  CrowdHuman数据集对比实验结果

    Table  8.   Results of comparison experiment on CrowdHuman dataset

    检测器召回率 检测精度
    BaselinePS-RCNNIterDet本文方法BaselinePS-RCNNIterDet本文方法
    RetinaNet93.8091.4997.4080.8384.7789.73
    Faster R-CNN90.2493.7795.8097.9884.9586.0588.0891.15
    下载: 导出CSV

    表  9  WiderPerson数据集对比实验结果

    Table  9.   Results of comparison experiment on WiderPerson dataset

    检测器召回率检测精度
    BaselinePS-RCNNIterDet本文方法BaselinePS-RCNNIterDet本文方法
    RetinaNet90.2095.3598.8789.1290.2395.99
    Faster R-CNN93.6094.7197.1598.6788.8989.9691.9596.67
    下载: 导出CSV
  • [1] 邱博, 刘翔, 石蕴玉, 等. 一种轻量化的多目标实时检测模型[J]. 北京航空航天大学学报, 2020, 46(9): 1778-1785. doi: 10.13700/j.bh.1001-5965.2020.0066

    QIU B, LIU X, SHI Y Y, et al. A lightweight multi-target real-time detection model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1778-1785(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0066
    [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [3] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [4] GIRSHICK R. Fast R-CNN [C]//IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2016: 1440-1448.
    [5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [7] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [8] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2021-06-06], https://arxiv.org/abs/1804.02767.
    [9] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-06-06]. https://arxiv.org/abs/2004.10934.
    [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [11] LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. doi: 10.1007/s11263-019-01204-1
    [12] ZHOU X Y, ZHUO J C, KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 850-859.
    [13] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]//IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 9626-9635.
    [14] ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 9756-9765.
    [15] 罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239. doi: 10.3969/j.issn.0372-2112.2020.06.026

    LUO H L, CHEN H K. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239(in Chinese). doi: 10.3969/j.issn.0372-2112.2020.06.026
    [16] GE Z, JIE Z, HUANG X, et al. PS-RCNN: Detecting secondary human instances in a crowd via primary object suppression [EB/OL]. (2020-03-16) [2021-06-06]. http://arxiv.org/abs/2003.07080.
    [17] RUKHOVICH D, SOFIIUK K, GALEEV D, et al. IterDet: Iterative scheme for object detection in crowded environments[C]//Structural, Syntactic, and Statistical Pattern Recognition. Beilin: Springer, 2021: 344-354.
    [18] 王海, 王宽, 蔡英凤, 等. 基于改进级联卷积神经网络的交通标志识别[J]. 汽车工程, 2020, 42(9): 1256-1262. doi: 10.19562/j.chinasae.qcgc.2020.09.016

    WANG H, WANG K, CAI Y F, et al. Traffic sign recognition based on improved cascade convolution neural network[J]. Automotive Engineering, 2020, 42(9): 1256-1262(in Chinese). doi: 10.19562/j.chinasae.qcgc.2020.09.016
    [19] 郑浦, 白宏阳, 李伟, 等. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784. doi: 10.3785/j.issn.1008-973X.2020.09.014

    ZHENG P, BAI H Y, LI W, et al. Small target detection algorithm in complex background[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1777-1784(in Chinese). doi: 10.3785/j.issn.1008-973X.2020.09.014
    [20] 马立, 巩笑天, 欧阳航空. Tiny YOLOV3目标检测改进[J]. 光学精密工程, 2020, 28(4): 988-995.

    MA L, GONG X T, OUYANG H K. Improvement of Tiny YOLOV3 target detection[J]. Optics and Precision Engineering, 2020, 28(4): 988-995(in Chinese).
    [21] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [22] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [23] PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: Towards balanced learning for object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 821-830.
    [24] SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman: A benchmark for detecting human in a crowd[EB/OL]. (2018-04-30)[2021-06-06]. https://arxiv.org/abs/1805.00123.
    [25] ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: A diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2): 380-393. doi: 10.1109/TMM.2019.2929005
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  1808
  • HTML全文浏览量:  42
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答