留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人辅助视网膜下注射系统的设计与实现

王朝董 广晨汉 王丽强 宗俊杰 郑昱 杨洋

王朝董,广晨汉,王丽强,等. 机器人辅助视网膜下注射系统的设计与实现[J]. 北京航空航天大学学报,2023,49(9):2406-2414 doi: 10.13700/j.bh.1001-5965.2021.0667
引用本文: 王朝董,广晨汉,王丽强,等. 机器人辅助视网膜下注射系统的设计与实现[J]. 北京航空航天大学学报,2023,49(9):2406-2414 doi: 10.13700/j.bh.1001-5965.2021.0667
WANG Z D,GUANG C H,WANG L Q,et al. Design and implementation of robot-assisted subretinal injection system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2406-2414 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0667
Citation: WANG Z D,GUANG C H,WANG L Q,et al. Design and implementation of robot-assisted subretinal injection system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2406-2414 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0667

机器人辅助视网膜下注射系统的设计与实现

doi: 10.13700/j.bh.1001-5965.2021.0667
基金项目: 国家重点研发计划智能机器人专项(2007YFB1302700)
详细信息
    通讯作者:

    E-mail:yang_mech@buaa.edu.cn

  • 中图分类号: TP242.3

Design and implementation of robot-assisted subretinal injection system

Funds: National Key R&D Program for Intelligent Robots (2007YFB1302700)
More Information
  • 摘要:

    视网膜下注射人胚胎干细胞是治疗视网膜变性的一种有效术式,该术式对医生手术操作的精准性、稳定维持能力、安全性均提出了很高的要求。为此,提出一种基于主从式机器人的视网膜下注射系统,辅助医生完成视网膜下注射操作。构建从手机器人的正逆运动学模型,然后进行视网膜下注射手术运动分析,确定从手机器人的运动要求。建立主手和从手机器人之间的运动映射关系,依据运动映射关系推导建立远程运动中心(RCM)点位置调整运动、术中RCM运动的状态切换和分离过程的速度映射模型。通过离体猪眼球视网膜下穿刺注射实验对机器人的精确性和稳定维持能力进行验证,结果表明:机器人辅助操作系统末端注射针具有稳定维持能力和运动的精确性,机器人辅助操作比徒手操作对视网膜造成的创伤更小,注射更稳定。

     

  • 图 1  机器人系统组成

    Figure 1.  Composition of robot system

    图 2  RCM机构运动简图和实物图

    Figure 2.  Schematic diagram and physical diagram of RCM

    图 3  微流注射系统示意

    Figure 3.  Schematic diagram of microfluidic injection system

    图 4  注射针

    Figure 4.  Injection needle

    图 5  机器人坐标系

    Figure 5.  Robot coordinate system

    图 6  末端工作空间向视图

    Figure 6.  End workspace direction view

    图 7  末端工作空间y-z投影

    Figure 7.  y-z projection of end workspace

    图 8  末端工作空间x-y投影

    Figure 8.  x-y projection of end workspace

    图 9  末端工作空间x-z投影

    Figure 9.  x-z projection of end workspace

    图 10  RCM机构简图

    Figure 10.  Sketch map of RCM mechanism

    图 11  手术关键阶段示意图

    Figure 11.  Schematic diagram of key stages of surgery

    图 12  RCM运动示意图

    Figure 12.  Schematic representation of RCM movement

    图 13  机器人系统及手术阶段

    Figure 13.  Robotic system and surgical stages

    图 14  主手摇杆轴偏移角度与从手末端速度关系

    Figure 14.  Relationship between axis offset angle of master joystick and speed of slave end

    图 15  机器人主从映射关系

    Figure 15.  Master-slave mapping relationship of robot

    图 16  手术场景图

    Figure 16.  Operation scene diagram

    图 17  注射结束前后的图像

    Figure 17.  Images before and after injection

    表  1  机器人性能指标

    Table  1.   Robot performance index

    参数数值
    RCM点xyz运动范围/mm±50
    RCM点xyz运动精度/mm0.01
    俯仰运动范围/(°)±30
    翻滚运动范围/(°)±90
    俯仰/翻滚运动精度/rad0.000 5
    注射针自身轴向的旋转范围/(°)±180
    注射针自身轴向的旋转精度/(°)< 1
    下载: 导出CSV

    表  2  D-H参数表

    Table  2.   D-H parameter table

    izi-1zi沿xi-1
    距离ai-1
    zi-1zixi-1
    角度αi-1/(°)
    xi-1xi沿zi
    距离di
    xi-1xizi
    角度θi
    100d1θ1
    2a10d2θ2
    3a20d3−90°
    40−90d4−90°3
    50−900θ4
    60−90d60
    下载: 导出CSV

    表  3  实验结果

    Table  3.   Experimental result

    操作方式及编号玻璃体腔漏液视网膜创伤孔大小眼球完整性
    徒手操作1++++++完整
    徒手操作2+++++完整
    徒手操作3+++完整
    徒手操作4++++++完整
    徒手操作5+++++完整
    机器人辅助6++完整
    机器人辅助7++++完整
    机器人辅助8++完整
    机器人辅助9++完整
    机器人辅助10++完整
    下载: 导出CSV
  • [1] MILLER J W, D’ANIERI L L, HUSAIN D, et al. Age-related macular degeneration (AMD): A view to the future[J]. Journal of Clinical Medicine, 2021, 10(5): 1124. doi: 10.3390/jcm10051124
    [2] HANDA J T, RICKMAN C B, DICK A D, et al. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration[J]. Nature Communications, 2019, 10(1): 106-116. doi: 10.1038/s41467-018-08036-6
    [3] ZHU J, LAMBA D A. Small molecule-based retinal differentiation of human embryonic stem cells and induced pluripotent stem cells[J]. Bio-Protocol, 2018, 8(12): e2882.
    [4] SHIRAI H, MANDAI M, MATSUSHITA K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 81-90.
    [5] YE K, TAKEMOTO Y, ITO A, et al. Reproducible production and image-based quality evaluation of retinal pigment epithelium sheets from human induced pluripotent stem cells[J]. Scientific Reports, 2020, 10(1): 1748-1760. doi: 10.1038/s41598-020-58656-6
    [6] CHAO J R, LAMBA D A, KLESERT T R, et al. Transplantation of human embryonic stem cell-derived retinal cells into the subretinal space of a non-human primate[J]. Translational Vision Science & Technology, 2017, 6(3): 4.
    [7] HE C Y, YANG Y. Multipoint force-constrained admittance control for retinal surgical robot[J]. Journal of Mechanical Engineering, 2021, 57(9): 12-18. doi: 10.3901/JME.2021.09.012
    [8] XIAO J J, YANG Y, SHEN L J, et al. A robotic system for retinal vascular bypass surgery[J]. Robot, 2014, 36(3): 293-299(in Chinese).
    [9] HE C Y, YANG Y, LIANG Q F, et al. Applications and research progress of robot assisted eye surgery[J]. Robot, 2019, 41(2): 265-275(in Chinese).
    [10] ÜNERI A, BALICKI M A, HANDA J, et al. New steady-hand eye robot with micro-force sensing for vitreoretinal surgery[C]//2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway: IEEE Press, 2010: 814-819.
    [11] HE X C, ROPPENECKER D, GIERLACH D, et al. Toward clinically applicable steady-hand eye robot for vitreoretinal surgery[C]// Proceedings of ASME 2012 International Mechanical Engineering Congress and Exposition. New York: ASME, 2013: 145-153.
    [12] EDWARDS T L, XUE K, MEENINK H C M, et al. First-in-human study of the safety and viability of intraocular robotic surgery[J]. Nature Biomedical Engineering, 2018, 2(9): 649-656. doi: 10.1038/s41551-018-0248-4
    [13] GIJBELS A, SMITS J, SCHOEVAERDTS L, et al. In-human robot-assisted retinal vein cannulation, D world first[J]. Annals of Biomedical Engineering, 2018, 46(10): 1676-1685. doi: 10.1007/s10439-018-2053-3
    [14] GIJBELS A, WILLEKENS K, ESTEVENY L, et al. Towards a clinically applicable robotic assistance system for retinal vein cannulation[C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics. Piscataway: IEEE Press, 2016: 284-291.
    [15] SU P, DENG S J, HUANG L, et al. Analysis and evaluation of a robotic trephination in penetrating keratoplasty[J]. Journal of Medical Devices, 2016, 10(2): 024503. doi: 10.1115/1.4032869
    [16] XIAO J J, HUANG L, SHEN L J, et al. Design and research of a robotic aided system for retinal vascular bypass surgery[J]. Journal of Medical Devices, 2014, 8(4): 044501. doi: 10.1115/1.4027230
    [17] HE C Y, HUANG L, YANG Y, et al. Research and realization of a master-slave robotic system for retinal vascular bypass surgery[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-10. doi: 10.1186/s10033-018-0219-4
    [18] HUANG L, YANG Y, SU P, et al. Type synthesis of 1R1T remote center of motion mechanisms[J]. Journal of Mechanical Engineering, 2015, 51(13): 131-136(in Chinese). doi: 10.3901/JME.2015.13.131
    [19] SCRUGGS B A, JIAO C H, CRANSTON C M, et al. Optimizing donor cellular dissociation and subretinal injection parameters for stem cell-based treatments[J]. Stem Cells Translational Medicine, 2019, 8(8): 797-809. doi: 10.1002/sctm.18-0210
    [20] SINGH S P N, RIVIERE C N. Physiological tremor amplitude during retinal microsurgery[C]//Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference. Piscataway: IEEE Press, 2002: 171-172.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  33
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-03-25
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答