留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于综合评价优化的民机顶层需求指标权衡

范周伟 余雄庆 戴亚林

范周伟,余雄庆,戴亚林. 基于综合评价优化的民机顶层需求指标权衡[J]. 北京航空航天大学学报,2023,49(9):2415-2422 doi: 10.13700/j.bh.1001-5965.2021.0670
引用本文: 范周伟,余雄庆,戴亚林. 基于综合评价优化的民机顶层需求指标权衡[J]. 北京航空航天大学学报,2023,49(9):2415-2422 doi: 10.13700/j.bh.1001-5965.2021.0670
FAN Z W,YU X Q,DAI Y L. Trade-off for top-level requirements of commercial aircraft using comprehensive evaluation and optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2415-2422 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0670
Citation: FAN Z W,YU X Q,DAI Y L. Trade-off for top-level requirements of commercial aircraft using comprehensive evaluation and optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2415-2422 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0670

基于综合评价优化的民机顶层需求指标权衡

doi: 10.13700/j.bh.1001-5965.2021.0670
基金项目: 国家自然科学基金(12032011);民用飞机专项科研项目
详细信息
    通讯作者:

    E-mail:yxq@nuaa.edu.cn

  • 中图分类号: V221+.7

Trade-off for top-level requirements of commercial aircraft using comprehensive evaluation and optimization

Funds: National Natural Science Foundation of China (12032011); Special Scientific Research Project for Civil Aircraft of the Ministry of Industry and Information
More Information
  • 摘要:

    确定顶层需求指标是民机设计流程之初的重要工作。针对民机顶层设计工作,提出一套民机顶层需求定量权衡方法。根据民机顶层需求与概念设计之间的关系,将概念设计方案的特性参数视为一组可行的顶层需求。将顶层需求的权衡分析问题转换为对飞机总体设计参数的优化问题。选择“经济性、舒适性、环保性、适应性、安全性/可靠性”这5条判断准则,建立民机顶层需求综合评价模型,评估顶层需求的综合竞争力。以竞争力最大为目标,优化概念方案,确定最优的顶层需求组合。在宽体客机案例中,得到了比初始需求更合理的顶层需求,验证了所提方法的可行性。

     

  • 图 1  民机顶层需求判断准则层次结构

    Figure 1.  Hierarchy of criteria for top-level aircraft requirements

    图 2  关系度矩阵的主要组成

    Figure 2.  Main components of relationship matrix

    图 3  S型可导函数

    Figure 3.  S-shaped derivative function

    图 4  顶层需求权衡架构

    Figure 4.  Architecture of trade-off of top-level aircraft requirements

    图 5  判断准则与顶层需求之间的关系度矩阵

    Figure 5.  Relationshis between criteria and top-level aircraft requirements

    图 6  飞机初步概念方案的几何外形

    Figure 6.  Geometric shape of preliminary conceptual plan of aircraft

    图 7  竞争力随优化代数的变化

    Figure 7.  Change with generation

    表  1  综合判断矩阵和权重

    Table  1.   Comprehensive judgement matrix and weiglas

    判断准则 矩阵数据 ω
    B1B2B3B4B5
    B115.4725.472310.335
    B20.18711.4720.2640.1730.060
    B30.1870.84310.20.1650.051
    B40.3334.045510.2420.163
    B515.9556.4274.9110.391
    下载: 导出CSV

    表  2  初始顶层需求

    Table  2.   Initial top-level aircraft requirements

    顶层需求初步估值相对权重/%
    座公里油耗/(kg·km−1·座−1)0.02211.09
    座公里成本/(元·km−1·座−1)0.3814.26
    座椅宽度/mm4802.553
    座椅排距/mm8002.553
    客舱高度/m21.986
    设计航程/km1200013.31
    展长/m612.312
    起飞场长/m27008.785
    着陆场长/m18007.243
    单发失效二阶段爬升梯度/%3.59.40
    进近速度/(m·s−1)707.243
    起降总噪声/dB2784.156
    航线NOx排放/kg13002.17
    签派可靠度/%9812.94
    下载: 导出CSV

    表  3  概念方案主要设计参数

    Table  3.   Main design parameters of aircraft concept

    部件设计参数取值
    参考面积/m2355
    机翼 展弦比10.5
    1/4弦线后掠角/(°)32
    机身长/m60
    机身 机身宽/m5.9
    机身高/m6.1
    最大静推力/kN334
    发动机 涵道比11
    总压比52
    下载: 导出CSV

    表  4  设计参数取值范围

    Table  4.   Range of para mefers

    范围单发海平面
    最大静推力/kN
    机翼参考
    面积/m2
    机翼展
    弦比
    机翼1/4弦
    线后掠角/(°)
    机翼翼根
    相对厚度
    经济舱座
    椅宽度/mm
    经济舱座
    椅排距/mm
    客舱高度/m
    下界 230 300 8.5 25 0.13 475 775 1.8
    初始值 334 355 10.5 32 0.14 480 800 2
    上界 400 430 11 36 0.15 525 850 2.3
    下载: 导出CSV

    表  5  顶层需求优化前后对比

    Table  5.   Comparison of top-level aircraft requirements

    座公里油耗/(kg·km−1·座−1 变化/% 座公里成本/(元·km−1·座−1 变化/%
    初步估值 优化结果 初步估值 优化结果
    0.022 0.020 −9.1 0.38 0.369 −2.9
    经济舱座椅宽度/mm 变化/% 经济舱座椅排距/mm 变化/%
    初步估值 优化结果 初步估值 优化结果
    480 475.0 −1.0 800 822.2 2.8
    客舱高度/m 变化/% 设计航程/km 变化/%
    初步估值 优化结果 初步估值 优化结果
    2 2.19 9.5 12000 11956 −0.4
    展长/m 变化/% 起飞场长/m 变化/%
    初步估值 优化结果 初步估值 优化结果
    61 61.1 0.2 2700 2397 −11.2
    着陆场长/m 变化/% 单发失效二阶段爬升梯度/% 变化/%
    初步估值 优化结果 初步估值 优化结果
    1800 1725 −4.2 3.5 3.6 2.9
    进近速度/(m·s−1) 变化/% 起降总噪声/dB 变化/%
    初步估值 优化结果 初步估值 优化结果
    70 71 1.4 278 276.8 −0.4
    航线NOx排放 变化/% 签派可靠度/% 变化/%
    初步估值 优化结果 初步估值 优化结果
    1300 1251 −3.8 98 98.3 0.3
    下载: 导出CSV

    表  6  设计变量优化前后对比

    Table  6.   Comparison of variables

    单发海平面最大静推力/kN 变化/% 机翼参考面积/m2 变化/% 机翼展弦比 变化/% 机翼1/4弦线后掠角/(°) 变化/%
    初始值 优化值 初始值 优化值 初始值 优化值 初始值 优化值
    334 341.5 2.2 355 339.1 −4.5 10.5 11.0 4.8 32 30.4 −5.0
    机翼翼根相对厚度 变化/% 经济舱座椅宽度/mm 变化/% 经济舱座椅排距/mm 变化/% 客舱高度/m 变化/%
    初始值 优化值 初始值 优化值 初始值 优化值 初始值 优化值
    0.14 0.131 −6.4 480 475.0 −1.0 800 822.2 2.8 2 2.19 9.5
    下载: 导出CSV
  • [1] WALDEN D D, ROEDLER G J, FORSBERG K, et al. Systems engineering handbook: A guide for system life cycle processes and activities[M]. 4th ed. San Diego: Wiley, 2015: 47-56.
    [2] ERES M H, BERTONI M, KOSSMANN M, et al. Mapping customer needs to engineering characteristics: An aerospace perspective for conceptual design[J]. Journal of Engineering Design, 2014, 25(1-3): 64-87. doi: 10.1080/09544828.2014.903387
    [3] 黄俊, 武哲, 孙惠中, 等. 作战飞机总体设计评价准则和评估方法研究[J]. 航空学报, 2000, 21(1): 70-73.

    HUANG J, WU Z, SUN H Z, et al. Study on evaluation criteria and assessment methodology for conceptual/preliminary design of combat aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 70-73(in Chinese).
    [4] PARKER J. Mission requirements and aircraft sizing[C]//Proceedings of the Aircraft Systems, Design and Technology Meeting. Reston: AIAA, 1986.
    [5] PETEILH N, KLEIN T, DRUOT T Y, et al. Challenging top level aircraft requirements based on operations analysis and data-driven models, application to takeoff performance design requirements[C]//Proceedings of the AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
    [6] TORENBEEK E. Advanced aircraft design: Conceptual design, analysis and optimization of subsonic civil airplanes[M]. Chichester: John Wiley and Sons, Ltd. , 2013: 31-33.
    [7] RAYMER D P. Aircraft design: A conceptual approach[M]. 6th ed. Washington, D.C.: AIAA, Inc. , 2018: 9-15.
    [8] SADRAEY M H. Aircraft design: A systems engineering approach[M]. Chichester: John Wiley and Sons, Ltd., 2013: 12-15.
    [9] DIRKS G, MELLER F. Multidisciplinary design optimization - Enhanced methodology for aircraft and technology evaluation[C]//Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2000.
    [10] 索欣诗, 李晓勇, 余雄庆, 等. 客机总体方案的综合评价方法[J]. 南京航空航天大学学报, 2018, 50(4): 558-564.

    SUO X S, LI X Y, YU X Q, et al. Comprehensive evaluation method for conceptual design of commercial aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(4): 558-564(in Chinese).
    [11] 宋笔锋, 张彬乾, 韩忠华. 大型客机总体设计准则与概念创新[J]. 航空学报, 2008, 29(3): 583-595.

    SONG B F, ZHANG B Q, HAN Z H. The study of concept design criteria for large-scale passenger aircraft with new technologies[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 583-595(in Chinese).
    [12] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759.

    CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759(in Chinese).
    [13] VINK P, BRAUER K. Aircraft interior comfort and design[M]. Boca Raton: CRC Press, 2011.
    [14] RICHARDS L G, JACOBSON I D. Ride quality assessment III: Questionnaire results of a second flight programme[J]. Ergonomics, 1977, 20(5): 499-519. doi: 10.1080/00140137708931659
    [15] CHAI X A, YU X Q, WANG Y. Tradeoff study between cost and environmental impact of aircraft using simultaneous optimization of airframe and engine cycle[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-10.
    [16] CLARK P. Buying the big jets: Fleet planning for airlines[M]. Hampshire: Ashgate Publishing Limited, 2007: 29-41.
    [17] 郭婧宜, 孙宇锋, 吴寒雪, 等. 基于STT与模糊QFD的装备质量特性分解方法[J]. 北京航空航天大学学报, 2012, 38(8): 1090-1095.

    GUO J Y, SUN Y F, WU H X, et al. Decomposition method of equipment quality characteristic based on STT and fuzzy QFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(8): 1090-1095(in Chinese).
    [18] 董彦非, 王礼沅, 王卓健, 等. 基于空战模式和AHP法的空战效能评估模型[J]. 系统工程与电子技术, 2006, 28(6): 885-888.

    DONG Y F, WANG L Y, WANG Z J, et al. Air combat effectiveness assessment model based on operational pattern and analytic hierarchy process[J]. Systems Engineering and Electronics, 2006, 28(6): 885-888(in Chinese).
    [19] LAMBE A B, MARTINS J R R A. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes[J]. Structural and Multidisciplinary Optimization, 2012, 46(2): 273-284. doi: 10.1007/s00158-012-0763-y
    [20] CHAI X, YU X Q, WANG Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft[J]. Chinese Journal of Aeronautics, 2018, 31(1): 99-106. doi: 10.1016/j.cja.2017.10.006
    [21] FIELDING J. Introduction to aircraft design[M]. Cambridge: Cambridge University Press, 1999: 255-258.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  28
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-25
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答