留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GPS P(Y)码功率增强监测分析

李文玄 焦文海 王凯 邱瑞瑾 孙淑贤

李文玄, 焦文海, 王凯, 等 . GPS P(Y)码功率增强监测分析[J]. 北京航空航天大学学报, 2022, 48(11): 2193-2203. doi: 10.13700/j.bh.1001-5965.2021.0676
引用本文: 李文玄, 焦文海, 王凯, 等 . GPS P(Y)码功率增强监测分析[J]. 北京航空航天大学学报, 2022, 48(11): 2193-2203. doi: 10.13700/j.bh.1001-5965.2021.0676
LI Wenxuan, JIAO Wenhai, WANG Kai, et al. Monitoring and analysis on GPS P(Y) code power enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2193-2203. doi: 10.13700/j.bh.1001-5965.2021.0676(in Chinese)
Citation: LI Wenxuan, JIAO Wenhai, WANG Kai, et al. Monitoring and analysis on GPS P(Y) code power enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2193-2203. doi: 10.13700/j.bh.1001-5965.2021.0676(in Chinese)

GPS P(Y)码功率增强监测分析

doi: 10.13700/j.bh.1001-5965.2021.0676
详细信息
    通讯作者:

    焦文海, E-mail: jiaowh0927@163.com

  • 中图分类号: P228;V249.3;TN967.1

Monitoring and analysis on GPS P(Y) code power enhancement

More Information
  • 摘要:

    全球定位系统(GPS)的Block IIR-M和Block IIF卫星具备可编程功率输出能力, 可以灵活增强单个信号分量的发射功率。为了系统评估GPS P(Y)码的功率增强能力, 对弹性功率的原理进行了理论分析, 提出了GPS信号功率增强的监测分析方法, 利用国际GNSS监测评估系统(iGMAS)和国际GNSS服务(IGS)监测站数据、高增益天线监测数据、事后精密星历对GPS增强P(Y)码的覆盖性及星座性能、空间信号和用户端性能进行了分析。结果表明:在保持发射总功率和民用信号功率不变的情况下, Block IIF和Block IIR-M卫星的L1 P(Y)码和L2 P(Y)码功率相比正常水平分别增强约6 dB和5 dB;在功率增强信号覆盖区内仅利用19颗增强卫星进行双频单点定位, 位置误差不大于15 m(95%);当可见增强卫星数为6, 增强后的P(Y)码载噪比为55 dB·Hz时, P(Y)码之间的多址干扰引起的等效载噪比下降量为0.4 dB。

     

  • 图 1  几种半无码技术的平方损耗

    Figure 1.  Square loss of several semi-codeless techniques

    图 2  功率增强星座覆盖区域范围和可见增强卫星数

    Figure 2.  Coverage area range and NSAT of power enhancement constellation

    图 3  功率增强星座全球可见增强卫星数

    Figure 3.  Global NSAT of power enhancement constellation

    图 4  增强星座区域位置精度因子

    Figure 4.  PDOP of enhanced constellation area

    图 5  增强星座全球位置精度因子

    Figure 5.  Global PDOP of enhanced constellation

    图 6  Block IIR-M G17卫星各信号分量强度(IGS ABPO站)

    Figure 6.  Strength of each signal component of Block IIR-M G17 satellite (IGS ABPO)

    图 7  Block IIF G24卫星各信号分量强度(IGS MCIL站)

    Figure 7.  Strength of each signal component of Block IIF G24 satellite (IGS MCIL)

    图 8  Block IIR-M G17卫星各信号分量强度的变化

    Figure 8.  Variation of strength of each signal component of Block IIR-M G17 satellite

    图 9  Block IIF G24卫星各信号分量强度的变化

    Figure 9.  Variation of strength of each signal component of Block IIF G24 satellite

    图 10  P(Y)码的等效载噪比

    Figure 10.  Equivalent carrier-to-noise ratio of P(Y) code

    图 11  增强P(Y)码引起的C/A码载噪比下降量

    Figure 11.  Degradation of C/A code carrier-to-noise ratio caused by enhanced P(Y) code

    图 12  各站点定位误差(95%)

    Figure 12.  Positioning error of each station(95%)

    表  1  2020年2月17日弹性功率开启和终止时刻(GPST)

    Table  1.   Flex power on and off moments on Feb.17th, 2020 (GPST)

    卫星编号 卫星类型 开始时刻 结束时刻 开始时刻 结束时刻 开始时刻 结束时刻
    G01 Block IIF 00:00 05:41 09:23 13:22 23:22 00:00
    G03 Block IIF 00:16 07:53 13:09 14:45
    G05 Block IIR-M 06:59 11:44 14:44 20:48
    G06 Block IIF 03:56 08:08 11:44 17:54
    G07 Block IIR-M 04:13 12:47
    G08 Block IIF 00:00 02:55 06:04 11:09 21:20 00:00
    G09 Block IIF 02:36 10:47
    G10 Block IIF 00:00 03:32 19:07 23:56
    G12 Block IIR-M 11:41 19:34
    G15 Block IIR-M 09:36 15:17 17:57 23:17
    G17 Block IIR-M 01:54 04:43 09:17 16:35
    G24 Block IIF 00:00 1:10 11:10 17:30 21:04 00:00
    G25 Block IIF 01:07 03:56 13:33 20:31
    G26 Block IIF 02:15 07:33 17:46 23:07
    G27 Block IIF 00:00 02:02 05:32 09:51 19:55 00:00
    G29 Block IIR-M 14:18 22:37
    G30 Block IIF 05:31 13:59
    G31 Block IIR-M 00:01 06:13 16:02 20:16
    G32 Block IIF 00:00 04:39 14:08 16:25 21:14 00:00
    下载: 导出CSV

    表  2  不同高度截止角下的全球可见增强卫星数

    Table  2.   Global NSAT at different elevation mask angle

    高度截止角/(°) NSAT
    最小 3
    5 最大 10
    平均 6.4
    最小 2
    15 最大 9
    平均 5
    最小 0
    30 最大 7
    平均 3.1
    下载: 导出CSV

    表  3  PDOP≤6星座可用性

    Table  3.   PDOP≤6 constellation availability

    高度截止角/(°) 星座可用性/%
    5 98.6
    15 81.4
    30 14.8
    下载: 导出CSV

    表  4  Block IIR-M G17和Block IIF G24卫星各信号分量功率变化量

    Table  4.   Power variation of each signal component of Block IIR-M G17 and Block IIF G24 satellite

    PRN 信号分量功率变化量/dB
    L2 P(Y) L1 C/A L2 C
    Block IIR-M G17 5.1 -2.4 -0.4
    Block IIF G24 5.4 0.4 -0.1
    下载: 导出CSV

    表  5  Block IIF卫星L1频点信号调制方式和功率比变化

    Table  5.   Variation of signal modulation mode and power ratio at L1 frequency band of Block IIF satellites

    PRN 调整前调制方式 调整后调制方式 调整前PP(Y): PC/A/dB 调整后PP: PC/A/dB ΔPP: PC/A/dB
    G03 CASM QPSK -2.99 3.54 6.53
    G09 QPSK QPSK -3.05 3.66 6.71
    G24 QPSK QPSK -3.02 3.46 6.48
    G25 CASM QPSK -2.74 3.94 6.68
    G26 QPSK QPSK -3.09 3.42 6.51
    G27 CASM QPSK -2.88 3.81 6.69
    G30 QPSK QPSK -3.07 3.48 6.55
    G32 CASM QPSK -3.31 3.63 6.94
    平均值 -3.02 3.62 6.64
    下载: 导出CSV
  • [1] JIMÉNEZ-BAÑOS D, PERELLÓ-GISBERT J V, CRISCI M. The measured effects of GPS flex power capability collected on sensor station data[C]//2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). Piscataway: IEEE Press, 2010: 1-6.
    [2] THOELERT S, HAUSCHILD A, STEIGENBERGER P, et al. GPS ⅡR-M L1 transmit power redistribution: Analysis of GNSS receiver and high-gain antenna data[J]. Navigation-Journal of the Institute of Navigation, 2018, 65(3): 423-430. doi: 10.1002/navi.250
    [3] STEIGENBERGER P, THÖLERT S, MONTENBRUCK O. Flex power on GPS Block ⅡR-M and ⅡF[J]. GPS Solutions, 2019, 23(8): 1-12. doi: 10.1007/s10291-018-0797-8
    [4] ESENBUǦA Ö G, HAUSCHILD A. Impact of flex power on GPS Block ⅡF differential code biases[J]. GPS Solutions, 2020, 24(4): 1-9.
    [5] 刘苗苗, 焦文海, 贾小林. 战时叙利亚地区GPS定位结果分析[J]. 测绘科学与工程, 2018, 38(4): 19-25.

    LIU M M, JIAO W H, JIA X L. Analysis of GPS positioning results in wartime Syria[J]. Geomatics Science and Engineering, 2018, 38(4): 19-25(in Chinese).
    [6] 韩奇, 朱克家, 付钰, 等. 美国打击叙利亚期间GPS信号监测评估[J]. 导航定位学报, 2019, 7(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201903002.htm

    HAN Q, ZHU K J, FU Y, et al. Monitoring and assessment of GPS signals during US attacking on Syria[J]. Journal of Navigation and Positioning, 2019, 7(3): 7-10(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201903002.htm
    [7] 刘苗苗, 焦文海, 贾小林. 美伊冲突中的GPS信号增强分析[J]. 全球定位系统, 2020, 45(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW202001006.htm

    LIU M M, JIAO W H, JIA X L. GPS signal enhancement analysis in the US-Iranian conflict[J]. GNSS World of China, 2020, 45(1): 31-36(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW202001006.htm
    [8] US Government Accountability Office. GPS modernization: DOD continuing to develop new jam-resistant capability, but widespread use remains years away: GAO-21-145[R]. Washington, D.C. : US Government Accountability Office, 2021: 35.
    [9] CAMERON A. Benefits coming from GPS Ⅲ constellation[J/OL]. GPS World, 2019(2019-04-01)[2021-11-01]. https://www.gpsworld.com/benefits-coming-from-gps-iii-constellation/.
    [10] RAJAN J A, TRACY J A. GPS ⅡR-M: Modernizing the signal-in-space[C]//Proceedings of the 2003 National Technical Meeting of the Institute of Navigation, 2003: 484-493.
    [11] GPS Joint Program Office. Navstar GPS space segment/navigation user segment interfaces: IS-GPS-200J[S]. EI Segundo: GPS Joint Program Office, 2018.
    [12] GPS Joint Program Office. Navstar GPS space segment/user segment L5 interfaces: IS-GPS-705E[S]. EI Segundo: GPS Joint Program Office, 2018.
    [13] BARKER B C, BETZ J W, CLARK J E, et al. Overview of the GPS M code signal[C]//Proceedings of the 2000 National Technical Meeting of the Institute of Navigation, 2000: 542-549.
    [14] RAJAN J A, IRVINE J. GPS ⅡR-M and ⅡF: Payload modernization[C]//Proceedings of the 2005 National Technical Meeting of the Institute of Navigation, 2005: 508-514.
    [15] US Defense Science Board. The future of the global positioning system technical report[R]. US Defense Science Board, 2005: 32.
    [16] PARTRIDGE M D, DAFESH P A. Code power measurement methodology for GPS Block ⅡR-M and ⅡF on-orbit test procedures[C]//Proccedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2001: 2764-2772.
    [17] 饶永南, 王萌, 康立, 等. GPS Ⅲ首星空间信号质量监测评估[J]. 电子学报, 2020, 48(2): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202002026.htm

    RAO Y N, WANG M, KANG L, et al. Signal-in-space quality monitoring and assessment for the first GPS Ⅲ satellite[J]. Acta Electronica Sinica, 2020, 48(2): 407-411(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202002026.htm
    [18] 帅平, 曲广吉. 基于半分析式方法的全球导航星座设计[J]. 中国空间科学技术, 2006(4): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ200604002.htm

    SHUAI P, QU G J. Global navigation constellation design based on semi-analysis method[J]. Chinese Space Science and Technology, 2006(4): 11-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ200604002.htm
    [19] FALLETTI E, PINI M, PRESTI L. Low complexity carrier-to-noise ratio estimators for GNSS digital receivers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 420-437. https://iris.polito.it/handle/11583/2460509
    [20] WOO K. Optimum semicodeless carrier-phase tracking of L2[J]. Navigation-Journal of the Institute of Navigation, 2000, 47(2): 82-99. http://www.bmotion.com/navcom/images/tech_archiv/L2_Phase_Tracking.pdf
    [21] 康立, 饶永南, 王雪, 等. GPSBⅡF-1卫星L1频点QPSK VS CASM信号质量评估[J]. 宇航学报, 2019, 40(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201901012.htm

    KANG L, RAO Y N, WANG X, et al. QPSK VS CASM signals quality assessment on GPSBⅡF-1 satellite L1[J]. Journal of Astronautics, 2019, 40(1): 102-108(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201901012.htm
    [22] KAPLAN E D, HEGARTY C J. GPS原理与应用(第2版)[M]. 寇艳红, 译. 北京: 电子工业出版社, 2007: 194.

    KAPLAN E D, HEGARTY C J. Understanding GPS principles and applications(2nd ed)[M]. KOU Y H, translated. Beijing: Publishing House of Electronics Industry, 2007: 194(in Chinese).
    [23] ESENBUGA Ö G, HAUSCHILD A, STEIGENBERGER P. Impact of GPS flex power on differential code bias estimation for Block ⅡR-M and ⅡF satellites[C]//Proceedings of the 2020 National Technical Meeting of the Institute of Navigation, 2020: 2922-2930.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  101
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-03-10
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答