留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向制造成本的变刚度复合材料结构优化设计

陈世泽 李道春 向锦武

陈世泽,李道春,向锦武. 面向制造成本的变刚度复合材料结构优化设计[J]. 北京航空航天大学学报,2023,49(9):2423-2431 doi: 10.13700/j.bh.1001-5965.2021.0677
引用本文: 陈世泽,李道春,向锦武. 面向制造成本的变刚度复合材料结构优化设计[J]. 北京航空航天大学学报,2023,49(9):2423-2431 doi: 10.13700/j.bh.1001-5965.2021.0677
CHEN S Z,LI D C,XIANG J W. Design optimization of tow-steered composite structure targeting on manufacturing cost[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2423-2431 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0677
Citation: CHEN S Z,LI D C,XIANG J W. Design optimization of tow-steered composite structure targeting on manufacturing cost[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2423-2431 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0677

面向制造成本的变刚度复合材料结构优化设计

doi: 10.13700/j.bh.1001-5965.2021.0677
详细信息
    通讯作者:

    E-mail:chensz@cgwic.com

  • 中图分类号: V221+.3

Design optimization of tow-steered composite structure targeting on manufacturing cost

More Information
  • 摘要:

    传统的复合材料结构设计方法未能有效利用复合材料的面内设计空间,变刚度结构的实用化为复合材料结构效能的提升提供了新的机会。使用制造工艺成本模型,以制造成本为目标函数,建立结构性能约束和制造约束,通过路径函数法和平移法对一型大展弦比机翼进行变刚度设计,建立了以制造成本为目标的变刚度复合材料结构设计优化方法,实现制造成本减少23.87%,结构减重35.58%,并分析了不同纤维路径对变刚度结构构型设计、性能、质量和制造过程的影响。

     

  • 图 1  变刚度复合材料优化设计流程

    Figure 1.  Flow chart of variable stiffness composite structure design optimization

    图 2  分步优化方法

    Figure 2.  Two step optimization method

    图 3  机翼有限元模型

    Figure 3.  Finite element model of wing

    图 4  翼尖最大位移

    Figure 4.  Maximum displacement at wing tip

    图 5  最大扭转角

    Figure 5.  Maximum torsion angle

    图 6  颤振计算结果

    Figure 6.  Flutter calculation results

    图 7  有限元模型离散[14]

    Figure 7.  Discretization of finite model[14]

    图 8  优化流程

    Figure 8.  Flow chart of optimization

    图 9  优化程序结构

    Figure 9.  Structure of optimization program

    图 10  线性函数结果收敛过程

    Figure 10.  Convergence process of linear function

    图 11  抛物线函数结果收敛过程

    Figure 11.  Convergence process of parabola function

    图 12  正弦函数结果收敛过程

    Figure 12.  Convergence process of sine function

    表  1  机翼基本参数

    Table  1.   Basic parameters of wing

    参数初始值
    翼展/m20
    弦长/m1.75
    翼肋数量19
    蒙皮厚度/mm3.3
    蒙皮层数22
    翼肋厚度/mm1.8
    翼肋层数12
    梁边长/mm101
    翼尖最大位移/m0.323
    翼尖最大扭角/(°)2.44
    颤振速度/(m·s−1206
    结构质量/kg535.08
    下载: 导出CSV

    表  2  优化结果

    Table  2.   Optimization results

    方案制造成本/
    EWH
    蒙皮厚
    度/mm
    蒙皮
    层数
    翼肋厚
    度/mm
    翼肋
    层数
    梁边
    长/mm
    翼尖最大
    位移/m
    翼尖最大
    扭角/(°)
    颤振速度/
    (m·s−1
    结构质
    量/kg
    线性函数1326.172.4161.812830.3273.19205351.87
    抛物线函数1331.921.5 101.812840.3253.09205346.52
    正弦函数 1317.66 1.8121.812830.3243.17205344.68
    初始方案 1730.75 3.3 22 1.8 12 101 0.323 2.44 206535.08
    下载: 导出CSV
  • [1] WEISSHAAR T A. Aeroelastic tailoring of forward swept composite wings[J]. Journal of Aircraft, 1981, 18(8): 669-676. doi: 10.2514/3.57542
    [2] STANFORD B K, JUTTE C V. Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings[J]. Computers & Structures, 2017, 183: 48-60.
    [3] WANG Z X, WAN Z Q, GROH R M J, et al. Aeroelastic and local buckling optimisation of a variable-angle-tow composite wing-box structure[J]. Composite Structures, 2021, 258: 113201. doi: 10.1016/j.compstruct.2020.113201
    [4] ALHAJAHMAD A, MITTELSTEDT C. Minimum weight design of curvilinearly grid-stiffened variable-stiffness composite fuselage panels considering buckling and manufacturing constraints[J]. Thin-Walled Structures, 2021, 161: 107526. doi: 10.1016/j.tws.2021.107526
    [5] BROOKS T R, MARTINS J R R A, KENNEDY G J. Aerostructural tradeoffs for tow-steered composite wings[J]. Journal of Aircraft, 2020, 57(5): 787-799. doi: 10.2514/1.C035699
    [6] PEREIRA D A, SALES T P, RADE D A. Multi-objective frequency and damping optimization of tow-steered composite laminates[J]. Composite Structures, 2021, 256: 112932. doi: 10.1016/j.compstruct.2020.112932
    [7] BUTLER R, BAKER N, LIU W L, et al. Damage tolerance of buckling optimized variable angle tow panels[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2443.
    [8] ZHANG B, CHEN K L, ZU L. Aeroelastic tailoring method of tow-steered composite wing using matrix perturbation theory[J]. Composite Structures, 2020, 234: 111696. doi: 10.1016/j.compstruct.2019.111696
    [9] STODIECK O, COOPER J E, WEAVER P M, et al. Aeroelastic tailoring of a representative wing box using tow-steered composites[J]. AIAA Journal, 2017, 55(4): 1425-1439. doi: 10.2514/1.J055364
    [10] STODIECK O, COOPER J E, WEAVER P M, et al. Optimization of tow-steered composite wing laminates for aeroelastic tailoring[J]. AIAA Journal, 2015, 53(8): 2203-2215. doi: 10.2514/1.J053599
    [11] 李飞, 聂国隽. 基于连续丝束剪切技术的变角度复合材料层合板的热屈曲分析[J]. 力学季刊, 2019, 40(2): 265-273. doi: 10.15959/j.cnki.0254-0053.2019.02.005

    LI F, NIE G J. Thermal buckling analysis of VAT composite laminates fabricated by continuous tow shearing[J]. Chinese Quarterly of Mechanics, 2019, 40(2): 265-273(in Chinese). doi: 10.15959/j.cnki.0254-0053.2019.02.005
    [12] WU K, TATTING B, SMITH B, et al. Design and manufacturing of tow-steered composite shells using fiber placement[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2700.
    [13] XIAO Z F, ACKERMANN A, HARRISON P. Manual 2-dimensional fabric steering, for the manufacture of variable stiffness panels[J]. Procedia Manufacturing, 2020, 47: 24-28. doi: 10.1016/j.promfg.2020.04.111
    [14] 孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34(10): 2121-2133. doi: 10.13801/j.cnki.fhclxb.20170829.006

    KONG B, GU J F, CHEN P H, et al. Design, manufacture and analysis of variable-stiffness composite structures[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2121-2133(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170829.006
    [15] HAO P, LIU D C, WANG Y, et al. Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters[J]. Composite Structures, 2019, 219: 158-169. doi: 10.1016/j.compstruct.2019.03.075
    [16] SOHOULI A, YILDIZ M, SULEMAN A. Cost analysis of variable stiffness composite structures with application to a wind turbine blade[J]. Composite Structures, 2018, 203: 681-695. doi: 10.1016/j.compstruct.2018.07.049
    [17] CHEN S Z, LI D C, XIANG J W, et al. Composite manufacturing cost model targeting on design optimization[J]. Applied Composite Materials, 2020, 27(5): 673-691. doi: 10.1007/s10443-020-09828-0
    [18] KIM B C, POTTER K, WEAVER P M. Continuous tow shearing for manufacturing variable angle tow composites[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(8): 1347-1356. doi: 10.1016/j.compositesa.2012.02.024
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  507
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-01-02
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答