留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变权重-正态云模型的飞机轮胎滑水风险

李岳 胡宇祺 蔡靖 戴轩

李岳,胡宇祺,蔡靖,等. 基于变权重-正态云模型的飞机轮胎滑水风险[J]. 北京航空航天大学学报,2023,49(9):2299-2305 doi: 10.13700/j.bh.1001-5965.2021.0680
引用本文: 李岳,胡宇祺,蔡靖,等. 基于变权重-正态云模型的飞机轮胎滑水风险[J]. 北京航空航天大学学报,2023,49(9):2299-2305 doi: 10.13700/j.bh.1001-5965.2021.0680
LI Y,HU Y Q,CAI J,et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2299-2305 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0680
Citation: LI Y,HU Y Q,CAI J,et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2299-2305 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0680

基于变权重-正态云模型的飞机轮胎滑水风险

doi: 10.13700/j.bh.1001-5965.2021.0680
基金项目: 天津市自然科学基金(21JCQNJC00850); 中央高校基本科研业务费专项资金(3122019103)
详细信息
    通讯作者:

    E-mail:jcai@cauc.edu.cn

  • 中图分类号: V351.11

Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model

Funds: Tianjin Natural Science Foundation (21JCQNJC00850); Fundamental Research Funds for the Central Universities (3122019103)
More Information
  • 摘要:

    针对飞机轮胎滑水行为的随机性和模糊性特征,提出基于正态云模型的滑水安全评价分析方法。引入变权理论动态调整权值,采用惩罚性变权函数降低常权权值对评价结果的主观影响。构建飞机轮胎滑水流固耦合仿真分析模型,选取飞机轮载、滑行速度、积水厚度、道面摩擦系数及刻槽深度作为风险影响因素,基于单因素云模型数字特征及变权向量求解综合隶属度,建立多元决策下的飞机滑水风险等级及划分标准。以某山区多雨机场轮胎滑水事件为实例进行验证,结果表明:以传统临界滑水速度指标进行条件判定仅得出允许起降的一般结论;对比常权和变权评价结果,工况1安全系数由1.09提高至1.17,工况2由2.09提高至2.94,可定量描述道面起降环境差异,滑水风险仍在可接受范围内,变权评价结果偏于保守;工况3安全系数由3.13提高至3.74,滑水风险上升至Ⅳ级,即使道面积水厚度符合上限要求,轮胎滑水发生几率仍有可能显著提高,与实际风险情况基本一致,对道面运行安全分级管理具备参照性。

     

  • 图 1  云评价模型数字特征

    Figure 1.  Digital features of cloud evaluation model

    图 2  滑水风险评价流程

    Figure 2.  Assessment procedure of hydroplaning risk

    图 3  飞机轮胎滑水流固耦合仿真模型

    Figure 3.  Simulation model of aircraft tire hydroplaning on fluid-solid coupring analysis

    图 4  单影响因素典型云图

    Figure 4.  Typical cloud chart of single influencing factor

    表  1  飞机滑水风险因素及分级

    Table  1.   Aircraft hydroplaning evaluation index and classification

    风险
    等级
    滑行速度/
    (km∙h−1)
    积水厚
    度/mm
    飞机轮
    载/kN
    刻槽深
    度/mm
    道面摩
    擦系数
    Ⅰ级190
    ~200
    0~5123.1
    ~138.0
    5~60.7~0.8
    Ⅱ级200
    ~230
    5~8107.3
    ~123.1
    4~50.6~0.7
    Ⅲ级230
    ~260
    8~1191.7
    ~107.3
    3~40.5~0.6
    Ⅳ级260
    ~300
    11~1575.8
    ~91.7
    0~30~0.5
    下载: 导出CSV

    表  2  正态云模型数字特征

    Table  2.   Digital features of normal cloud model

    影响因素 滑行速度/(km∙h−1) 积水厚度/mm 飞机轮载/kN 刻槽深度/mm 道面摩擦系数
    I级 (195,3.33,0.01) (2.5,1.67,0.01) (129.8,5.7,0.01) (5.5,0.33,0.01) (0.75,0.03,0.01)
    II级 (215,10,0.01) (6.5,1,10.01) (113.0,5.5,0.01) (4.5,0.33,0.01) (0.65,0.03,0.01)
    III级 (245,10,0.01) (9.5,1,0.01) (97.1,5.1,0.01) (3.5,0.33,0.01) (0.55,0.03, 0.01)
    IV级 (280,13.3,0.01) (13,1.33,0.01) (82.8,4.5,0.01) (1.5,1,0.01) (0.25,0.166, 0.01)
    下载: 导出CSV

    表  3  轮胎水滑事件影响因素基本参数

    Table  3.   Basic parameters of influencing factors of aircraft tire hydroplaning symptoms

    工况滑行速
    度/(km∙h−1)
    积水厚
    度/mm
    飞机轮
    载/kN
    刻槽深
    度/mm
    道面摩
    擦系数
    12203138.860.76
    22505100.450.66
    3280876.530.60
    下载: 导出CSV

    表  4  不同工况下飞机滑水风险安全性评价

    Table  4.   Safety evaluation of aircraft hydroplaning under different conditions

    工况评价
    方法
    安全
    系数
    安全等级规范判定
    1常权1.09Ⅰ级允许起降
    本文方法1.17Ⅰ级
    2常权2.09Ⅱ级允许起降
    本文方法2.94Ⅲ级
    3常权3.13Ⅲ级允许起降
    本文方法3.73Ⅳ级
    下载: 导出CSV
  • [1] 余治国, 李曙林, 朱青云. 机轮动力滑水机理分析[J]. 空军工程大学学报(自然科学版), 2004, 5(5): 9-11.

    YU Z G, LI S L, ZHU Q Y. Mechanism analysis of an aircraft tire dynamic hydroplaning[J]. Journal of Air Force Engineering University (Natural Science Edition), 2004, 5(5): 9-11(in Chinese).
    [2] 蔡靖, 许诤. 沟槽磨损对飞机轮胎滑水影响仿真分析[J]. 中国民航大学学报, 2020, 38(2): 38-43. doi: 10.3969/j.issn.1674-5590.2020.02.008

    CAI J, XU Z. Simulation analysis on influence of groove abrasion on aircraft hydroplaning[J]. Journal of Civil Aviation University of China, 2020, 38(2): 38-43(in Chinese). doi: 10.3969/j.issn.1674-5590.2020.02.008
    [3] 朱兴一, 庞亚凤, 杨健, 等. 湿滑条件下基于真实纹理道面的机轮着陆滑水行为解析[J]. 中国公路学报, 2020, 33(10): 159-170.

    ZHU X Y, PANG Y F, YANG J, et al. Analysis on the hydroplaning of aircraft tire under real texture pavement conditions[J]. China Journal of Highway and Transport, 2020, 33(10): 159-170(in Chinese).
    [4] PURBA J H. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment[J]. Annals of Nuclear Energy, 2014, 70: 21-29. doi: 10.1016/j.anucene.2014.02.022
    [5] 朱晟泽. 基于路面宏观纹理的轮胎抗滑行为数值模拟研究[D]. 南京: 东南大学, 2017: 89-114.

    ZHU S Z. Numerical simulation of tire skid resistance based on pavement macro-texture[D]. Nanjing: Southeast University, 2017: 89-114 (in Chinese).
    [6] 冯停. 湿滑路面轮胎滑水机理研究[D]. 青岛: 青岛理工大学, 2018: 51-62.

    FENG T. The study of tire hydroplaning mechanism on wet road[D]. Qingdao: Qingdao Tehcnology University, 2018: 51-62 (in Chinese).
    [7] 黄晓明, 刘修宇, 曹青青, 等. 积水路面轮胎部分滑水数值模拟[J]. 湖南大学学报(自然科学版), 2018, 45(9): 113-121.

    HUANG X M, LIU X Y, CAO Q Q, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018, 45(9): 113-121(in Chinese).
    [8] FWA T F, PASINDU H R, ONG G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4): 423-429. doi: 10.1061/(ASCE)TE.1943-5436.0000336
    [9] BENEDETTO A. A decision support system for the safety of airport runways: The case of heavy rainstorms[J]. Transportation Research Part A:Policy and Practice, 2002, 36(8): 665-682. doi: 10.1016/S0965-8564(01)00029-5
    [10] Aviation Safety Network. Accident description [DB/OL]. (2020-08-01) [2020-10-01].https://aviation-safety.net/database/events/dblist.php?Event=LTLW.
    [11] 徐征捷, 张友鹏, 苏宏升. 基于云模型的模糊综合评判法在风险评估中的应用[J]. 安全与环境学报, 2014, 14(2): 69-72.

    XU Z J, ZHANG Y P, SU H S. Application of risk assessment on fuzzy comprehensive evaluation method based on the cloud model[J]. Journal of Safety and Environment, 2014, 14(2): 69-72(in Chinese).
    [12] 王贺, 刘高峰, 王慧敏. 基于云模型的城市极端雨洪灾害预警研究[J]. 水利经济, 2014, 32(4): 59-62,74.

    WANG H, LIU G F, WAGN H M. Warning of urban extreme rainstorm flood disasters based on cloud model[J]. Journal of Economics of Water Resources, 2014, 32(4): 59-62,74(in Chinese).
    [13] LI D Y, LIU C Y, GAN W Y. A new cognitive model: Cloud model[J]. International Journal of Intelligent Systems, 2009, 24(3): 357-375. doi: 10.1002/int.20340
    [14] 唐家文, 董兵, 王超峰. 基于云模型的空管安全运行保障能力评价[J]. 航空工程进展, 2021, 12(4): 59-67.

    TANG J W, DONG B, WANG C F. Evaluation on safe operation support ability of air traffic mangement based on cloud model[J]. Advances in Aeronautical Science and Engineering, 2021, 12(4): 59-67(in Chinese).
    [15] 史佳辉, 徐吉辉, 陈玉金, 等. 基于交互作用矩阵—多维云模型的飞机重着陆风险评估方法研究[J]. 系统工程与电子技术, 2021, 43(10): 3026-3032.

    SHI J H, XU J H, CHEN Y J, et al. Research on risk assessment method of aircraft heavy landing based on interaction matrix—multidimensional cloud model[J]. Systems Engineering and Electronics, 2021, 43(10): 3026-3032(in Chinese).
    [16] 刘伟, 韩莉. 基于云模型的综合保障评估方法研究[J]. 科技创新与应用, 2017(5): 67-69.

    LIU W, HAN L. Research on comprehensive support evaluation method based on cloud model[J]. Technology Innovation and Application, 2017(5): 67-69(in Chinese).
    [17] 华攸金, 李希建, 陈刘瑜. 基于变权与正态云理论的煤矿安全评价及应用[J]. 煤矿安全, 2020, 51(3): 239-242.

    HUA Y J, LI X J, CHEN L Y. Coal mine safety evaluation and application based on variable weight and normal cloud theory[J]. Safety in Coal Mines, 2020, 51(3): 239-242.
    [18] 王洪利, 冯玉强. 基于云模型具有语言评价信息的多属性群决策研究[J]. 控制与决策, 2005, 20(6): 679-681.

    WANG H L, FENG Y Q. On multiple attribute group decision making with linguistic assessment information based on cloud model[J]. Control and Decision, 2005, 20(6): 679-681(in Chinese).
    [19] LIN C J, ZHANG M, LI L P, et al. Risk assessment of tunnel construction based on improved cloud model[J]. Journal of Performance of Constructed Facilities, 2020, 34(3): 04020028. doi: 10.1061/(ASCE)CF.1943-5509.0001421
    [20] 宗一鸣. 湿滑道面条件下轮胎力学行为与飞机着陆安全问题研究[D]. 天津: 中国民航大学, 2017.

    ZONG Y M. Study on the mechanical properties of aircraft tire and safety problem in landing on wet-pavement[D]. Tianjin: Civil Aviation University of China, 2017 (in Chinese).
    [21] 牛亚东, 张思祥, 田广军, 等. 机场跑道摩擦系数影响因素研究[J]. 应用力学学报, 2021, 38(2): 715-720.

    NIU Y D, ZHANG S X, TIAN G J, et al. Research on influencing factors of friction coefficient in airport runway[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 715-720(in Chinese).
    [22] 孙晓, 杨淑芳, 武磊, 等. 基于博弈论-云模型的隧道围岩稳定性分析模型研究[J]. 有色金属工程, 2020, 10(10): 112-119. doi: 10.3969/j.issn.2095-1744.2020.10.017

    SUN X, YANG S F, WU L, et al. Study on the stability analysis model of tunnel surrounding rock based on the combined weighting cloud model of game theory[J]. Nonferrous Metals Engineering, 2020, 10(10): 112-119(in Chinese). doi: 10.3969/j.issn.2095-1744.2020.10.017
    [23] OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science and Technology, 2008, 22(1): 34-40. doi: 10.1007/s12206-007-1004-y
    [24] 梁辉如, 王永东, 彭浩, 等. 基于正态云理论的软弱隧道围岩分级[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 82-87.

    LIANG H R, WANG Y D, PENG H, et al. Classification of soft surrounding rock of tunnel based on normal cloud theory[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(11): 82-87(in Chinese).
    [25] 胡皓, 李德清, 赵娜, 等. 因素状态值为模糊数的变权综合决策方法[J]. 军械工程学院学报, 2014, 26(5): 75-78. doi: 10.3969/j.issn.1008-2956.2014.05.016

    HU H, LI D Q, ZHAO N, et al. Variable weights synthesis decision making based on fuzzy numbers[J]. Journal of Ordnance Engineering College, 2014, 26(5): 75-78(in Chinese). doi: 10.3969/j.issn.1008-2956.2014.05.016
    [26] 李德清, 李洪兴. 状态变权向量的性质与构造[J]. 北京师范大学学报(自然科学版), 2002, 38(4): 455-461.

    LI D Q, LI H X. The properties and construction of state variable weight vectors[J]. Journal of Beijing Normal University (Natural Science), 2002, 38(4): 455-461(in Chinese).
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  34
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-01-27
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答