留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CC1310芯片的多通道高速率低功耗无线传感系统

段瑞枫 吕燕洁 杜文基 周游

段瑞枫, 吕燕洁, 杜文基, 等 . 基于CC1310芯片的多通道高速率低功耗无线传感系统[J]. 北京航空航天大学学报, 2022, 48(11): 2177-2185. doi: 10.13700/j.bh.1001-5965.2021.0682
引用本文: 段瑞枫, 吕燕洁, 杜文基, 等 . 基于CC1310芯片的多通道高速率低功耗无线传感系统[J]. 北京航空航天大学学报, 2022, 48(11): 2177-2185. doi: 10.13700/j.bh.1001-5965.2021.0682
DUAN Ruifeng, LYU Yanjie, DU Wenji, et al. Multi-channel wireless sensor system based on CC1310 chip wtih high speed and low power consumption[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2177-2185. doi: 10.13700/j.bh.1001-5965.2021.0682(in Chinese)
Citation: DUAN Ruifeng, LYU Yanjie, DU Wenji, et al. Multi-channel wireless sensor system based on CC1310 chip wtih high speed and low power consumption[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2177-2185. doi: 10.13700/j.bh.1001-5965.2021.0682(in Chinese)

基于CC1310芯片的多通道高速率低功耗无线传感系统

doi: 10.13700/j.bh.1001-5965.2021.0682
基金项目: 

中央高校基本科研业务费专项资金 BLX201623

北京市自然科学基金 L202003

国家自然科学基金 31700479

详细信息
    通讯作者:

    段瑞枫, E-mail: drffighting2008@163.com

  • 中图分类号: TN914.5;TN924

Multi-channel wireless sensor system based on CC1310 chip wtih high speed and low power consumption

Funds: 

The Fundamental Research Funds for the Central Universities BLX201623

Beijing Natural Science Foundation L202003

National Natural Science Foundation of China 31700479

More Information
  • 摘要:

    为有效减轻新一代运载火箭传感器数据采集与传输系统的质量, 设计并实现了基于CC1310芯片的无线传感器系统。采用频分复用(FDM)结合时分复用(TDM)的方式完成多节点组网并实施分组管理, 组间频分复用既实现了节点数的扩增, 又提升了传输速率复用倍数, 分组数为4时子节点数量可达100个以上。提出主节点授时法结合多节点分时传输协议的优化设计方法, 保证多节点高精准同步, 避免节点间碰撞, 获得了最优的组内可达速率;设计节点唤醒/休眠模式切换策略, 有效降低了系统功耗。实测结果表明:2个主节点带5个子节点并行工作时, 传输速率可达400 Kbps, 且主节点数量增加时, 系统的传输速率成比例增大;单个子节点忙时功耗不超过60 mW, 闲时功耗不超过12 mW, 平均功耗为15.2 mW, 符合低功耗要求;同时, 所设计的无线传感系统具备良好的可靠性和鲁棒性。

     

  • 图 1  系统整体结构

    Figure 1.  Overall structure of system

    图 2  无线网络组网示意图

    Figure 2.  Schematic of wireless network

    图 3  系统周期性授时同步示意图

    Figure 3.  Schematic of system periodic timing synchronization

    图 4  最小保护间隔与授时周期的关系

    Figure 4.  Relationship between minimum protection interval and timing period

    图 5  系统各节点时钟同步示意图

    Figure 5.  Schematic of system nodes clock synchronization

    图 6  单频段可达的传输速率

    Figure 6.  Achievable transmission rate on single frequency

    图 7  主节点状态转移图

    Figure 7.  Master node state transition diagram

    图 8  子节点状态转移图

    Figure 8.  Sub-node state transition diagram

    图 9  单个子节点平均功耗

    Figure 9.  The average power for a sub-node

    图 10  上位机软件运行工作图

    Figure 10.  Computer software operation diagram

    图 11  子节点6传输速率随距离变化的测试结果

    Figure 11.  Test result of transmission rate for single sub-node 6 with changing distance

    表  1  传感器子节点采集信号与采样率

    Table  1.   Acquisition signals and sampling rates of sensor sub-nodes

    组别(频段/MHz) 子节点编号 模拟信号源 采样率/Hz
    1 电池电压 320
    第1组(868) 2 1 kHz正弦波 5 120
    4 湿度传感器 320
    第2组(915) 6 温度传感器 320
    8 电池电压 320
    下载: 导出CSV

    表  2  子节点传输速率

    Table  2.   The transmission rate of sub-nodes

    组别(频段/MHz) 子节点编号 传输速率/bps 净荷传输速率/bps
    1 68 608 2 560
    第1组(868) 2 66 560 40 960
    4 67 379 2 560
    第2组(915) 6 100 147 2 560
    8 101 376 2 560
    系统总速率 406 323 51 200
    下载: 导出CSV
  • [1] PATEL N R, KUMAR S. Wireless sensor networks' challenges and future prospects[C]//International Conference on System Modeling & Advancement in Research Trends. Piscataway: IEEE Press, 2018: 60-65.
    [2] CARMINATI M, KANOUN O, ULLO S L, et al. Prospects of distributed wireless sensor networks for urban environmental monitoring[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(6): 44-52. doi: 10.1109/MAES.2019.2916294
    [3] WU J, JIANG W, MEI Y, et al. A survey on the progress of testing techniques and methods for wireless sensor networks[J]. IEEE Access, 2019, 7: 4302-4316. doi: 10.1109/ACCESS.2018.2887246
    [4] 罗煜缤, 李洪, 周广铭, 等. 新一代箭载无线传感器网络系统架构综述[J]. 宇航计测技术, 2020, 40(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ202004001.htm

    LUO Y B, LI H, ZHOU G M, et al. Review on the system architecture of new generation wireless sensor network for rocket[J]. Journal of Astronautical Metrology and Measurement, 2020, 40(4): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ202004001.htm
    [5] WANG Y, LU J, HAO C, et al. Applicable to launch vehicle data integrated design method of wireless sensor network research[C]//2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). Piscataway: IEEE Press, 2018: 221-225.
    [6] WANG H, ZENG H, PING W. Linear estimation of clock frequency offset for time synchronization based on overhearing in wireless sensor networks[J]. IEEE Communications Letters, 2016, 20(2): 288-291. doi: 10.1109/LCOMM.2015.2510645
    [7] LEANDRO T B, TALES H, EDISON P. Enhancing time synchronization support in wireless sensor networks[J]. Sensors, 2017, 17(12): 2956. doi: 10.3390/s17122956
    [8] ABDULKAREM M, SAMSUDIN K, ROKHANI F Z, et al. Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction[J]. Structural Health Monitoring, 2020, 193: 693-735.
    [9] SUN X, SU Y, HUANG Y, et al. Design and development of a wireless sensor network time synchronization system for photovoltaic module monitoring[J]. International Journal of Distributed Sensor Networks, 2020, 16(5): 1-8.
    [10] 庄祎梦, 贺光辉, 陈洪涛, 等. 无线传感器网络高精度时间同步机制[J]. 信息技术, 2017(10): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201710001.htm

    ZHUANG Y M, HE G H, CHEN H T, et al. Method of highly accurate time synchronization for wireless sensor networks[J]. Information Technology, 2017(10): 1-4(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201710001.htm
    [11] 麦军, 邓巧茵, 万智萍. 基于CC2530的ZigBee无线组网温度监测系统的设计[J]. 电子设计工程, 2015, 23(22): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201522037.htm

    MAI J, DENG Q Y, WAN Z P. A ZigBee wireless network temperature monitoring system based on CC2530[J]. Electronic Design Engineering, 2015, 23(22): 117-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201522037.htm
    [12] SAHITYA G, BALAJI N, NAIDU C D, et al. Designing a wireless sensor network for precision agriculture using Zigbee[C]// IEEE International Advance Computing Conference. Piscataway: IEEE Press, 2017: 287-291.
    [13] NURGALIYEV M, SAYMBETOV A, YASHCHYSHYN Y, et al. Prediction of energy consumption for LoRa based wireless sensors network[J]. Wireless Networks, 2020, 26(5): 3507-3520. doi: 10.1007/s11276-020-02276-5
    [14] SOMMER P, MARET Y, DZUNG D. Low-power wide-area networks for industrial sensing applications[C]//IEEE International Conference on Industrial Internet. Piscataway: IEEE Press, 2018: 23-32.
    [15] 周洋. 无线传感网节点低功耗控制技术的研究[D]. 苏州: 苏州大学, 2019: 33-39.

    ZHOU Y. Research on low power control technology of wireless sensor network nodes[D]. Suzhou: Soochow University, 2019: 33-39(in Chinese).
    [16] 朱志斌. 基于CC1310的无线传感网络记录仪设计[D]. 太原: 中北大学, 2021: 30-36.

    ZHU Z B. Design of wireless sensor network recorder based on CC1310[D]. Taiyuan: North University of China, 2021: 30-36(in Chinese).
    [17] MAHBUBUR R, DALI I, VENKATA P. et al. Implementation of LPWAN over white spaces for practical deployment[C]//Conference on Internet-of-Things Design and Implementation. New York: ACM, 2019: 178-189.
    [18] JIAN L, MECHITOV K A, KIM R E, et al. Efficient time synchronization for structural health monitoring using wireless smart sensor networks[J]. Structural Control and Health Monitoring, 2016, 23(3): 470-486.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  138
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-03-09
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答