-
摘要:
针对混合翼身融合布局面临的三轴运动耦合和大迎角失稳等潜在操稳问题,研制三自由度虚拟飞行试验系统,基于动力学相似模型开展纵向和横航向开环虚拟飞行试验,对飞机的本体操稳特性进行研究。结果表明:该混合翼身融合布局飞机纵向和航向开环操纵均存在三轴运动耦合现象。纵向操纵会引起大迎角极限环失稳现象,迎角振荡平衡位置约为28°、振荡幅值约为2.56°、振荡主频率为0.55 Hz,振荡过程中气动力呈现非定常特性;V型尾翼偏航操纵响应呈现横向运动幅值最大、偏航运动次之、俯仰运动最小的特点。
Abstract:A three-degree-of-freedom wind tunnel virtual flight test system was created in an effort to address the possible stability issues of three-axis kinematic coupling and high angle-of-attack instability presented by the hybrid wing-body aircraft. Based on the dynamic similarity model, longitudinal and transverse open-loop virtual flight tests were carried out to study the stability characteristics of the aircraft. The research results show that there is a three-axis motion coupling phenomenon in both the longitudinal and directional open-loop manipulation of the hybrid wing-body aircraft. Longitudinal manipulation will cause the instability of the limit cycle at high angles of attack. The equilibrium position of oscillation is about 28°, the oscillation amplitude is about 2.56°, and the main oscillation frequency is 0.55 Hz. The aerodynamic force presents unsteady characteristics during the oscillation process; The lateral motion amplitude of the yaw manipulation is the largest, followed by yaw motion and pitch motion.
-
表 1 混合翼身融合布局民机几何参数
Table 1. Geometric parameters of hybrid wing body civil aircraft
机翼面积S/m2 展长L/m 平均气动弦长c/m 参考中心与机头距离/m 26.802 36 10.413 14.445 -
[1] KAWAI R. Acoustic prediction methodology and test validation for an efficient low-noise hybrid wing body subsonic transport: NF1676L-14465[R]. Washington, D. C. : NASA Langley Research Center, 2011. [2] REIST T A, ZINGG D W, RAKOWITZ M, et al. Multifidelity optimization of hybrid wing–body aircraft with stability and control requirements[J]. Journal of Aircraft, 2019, 56(2): 442-456. doi: 10.2514/1.C034703 [3] LU Y, ZHANG S G, ZHANG Z J, et al. Multiple hierarchy risk assessment with hybrid model for safety enhancing of unmanned subscale BWB demonstrator flight test[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2612-2626. doi: 10.1016/j.cja.2019.09.010 [4] RATLIFF C, MARQUART E. An assessment of a potential test technique: AIAA-1995-3415[R]. Reston: AIAA, 1995. [5] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 624-633. doi: 10.2514/1.39188 [6] CARNDUFF S, ERBSLOEH S, COOKE A, et al. Development of a low cost dynamic wind tunnel facility utilizing MEMS inertial sensors[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. [7] GATTO A, LOWENBERG M H. Evaluation of a three degree of freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6): 1747-1761. doi: 10.2514/1.19821 [8] GATTO A. Application of a pendulum support test rig for aircraft stability derivative estimation[J]. Journal of Aircraft, 2009, 46(3): 927-934. doi: 10.2514/1.38916 [9] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3 dof gimbal[C]//29th Congress of the International Council of the Aeronautical Sciences.Washington, D. C. : I CAS, 2014. [10] STENFELT G, RINGERTZ U. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5): 1807-1811. doi: 10.2514/1.C031017 [11] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030.GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030(in Chinese). [12] 郭林亮, 祝明红, 吴海瀛, 等. 结冰条件下大型民机操稳特性研究与风洞虚拟飞行验证[C]//中国力学大会论文集, 2019: 3261-3271.GUO L L, ZHU M H, WU H Y, et al. Study on stability and controllability of large civil aircraft under icing conditions and verification via virtual flight in wind tunnel[C]//Proceedings of Chinese Conference of Theoretical and Applied Mechanics, 2019: 3261-3271. [13] 聂博文, 杨洪森, 刘志涛, 等. 倾转四旋翼无人机飞行控制系统集成与风洞虚拟飞行试验应用[C]//中国空气动力学会论文集, 2019: 162-167.NIE B W, YANG H S, LIU Z T, et al. Flight control system integration and wind tunnel virtual flight test of a quad-rotor aircraft[C]//Proceeding of Chinese Aerodynamics Research Society, 2019: 162-167(in Chinese). [14] 郭天豪. 飞翼布局飞机虚拟飞行试验报告[R]. 绵阳: 中国空气动力研究与发展中心, 2019.GUO T H. Report of wind tunnel virtual flight for a flying wing[R]. Mianyang: China Aerodynamics Research and Develoment Center, 2019(in Chinese). [15] 张石玉, 赵俊波, 付增良, 等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学, 2020, 34(1): 49-54.ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54(in Chinese). [16] 付军泉, 史志伟, 耿玺, 等. 基于试验分岔分析的翼身融合飞行器纵向稳定性[J]. 航空学报, 2022, 43(1): 124931. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201022FU J Q, SHI Z W, GENG X, et al. Longitudinal stability of blended-wing-body aircraft based on experimental bifurcation analysis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124931(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201022 [17] 付军泉, 史志伟, 陈杰, 等. 一种翼身融合布局飞行器的偏离特性分析[J]. 实验流体力学, 2020, 34(6): 32-37.FU J Q, SHI Z W, CHEN J, et al. Departure characteristics of blended-wing-body aircraft[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 32-37(in Chinese). [18] 岑飞, 聂博文, 刘志涛, 等. 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017, 38(10): 121214.CEN F, NIE B W, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121214(in Chinese). [19] 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015: 4-5.LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 4-5 (in Chinese).