留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟飞行的混合翼身融合布局操稳特性

王延灵 冯帅 卜忱 沈彦杰 陈昊 芦士光

王延灵,冯帅,卜忱,等. 基于虚拟飞行的混合翼身融合布局操稳特性[J]. 北京航空航天大学学报,2023,49(9):2337-2344 doi: 10.13700/j.bh.1001-5965.2021.0684
引用本文: 王延灵,冯帅,卜忱,等. 基于虚拟飞行的混合翼身融合布局操稳特性[J]. 北京航空航天大学学报,2023,49(9):2337-2344 doi: 10.13700/j.bh.1001-5965.2021.0684
WANG Y L,FENG S,BU C,et al. Stability characteristics of hybrid wing-body aircraft based on virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2337-2344 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0684
Citation: WANG Y L,FENG S,BU C,et al. Stability characteristics of hybrid wing-body aircraft based on virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2337-2344 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0684

基于虚拟飞行的混合翼身融合布局操稳特性

doi: 10.13700/j.bh.1001-5965.2021.0684
详细信息
    通讯作者:

    E-mail:wangyanlingqdy@163.com

  • 中图分类号: V221+.3;TB553

Stability characteristics of hybrid wing-body aircraft based on virtual flight

More Information
  • 摘要:

    针对混合翼身融合布局面临的三轴运动耦合和大迎角失稳等潜在操稳问题,研制三自由度虚拟飞行试验系统,基于动力学相似模型开展纵向和横航向开环虚拟飞行试验,对飞机的本体操稳特性进行研究。结果表明:该混合翼身融合布局飞机纵向和航向开环操纵均存在三轴运动耦合现象。纵向操纵会引起大迎角极限环失稳现象,迎角振荡平衡位置约为28°、振荡幅值约为2.56°、振荡主频率为0.55 Hz,振荡过程中气动力呈现非定常特性;V型尾翼偏航操纵响应呈现横向运动幅值最大、偏航运动次之、俯仰运动最小的特点。

     

  • 图 1  混合翼身融合布局民机

    Figure 1.  HWB civil aircraft

    图 2  FL-51风洞试验

    Figure 2.  FL-51 wind tunnel test

    图 3  纵向静态测力试验结果($ \beta = $0°)

    Figure 3.  Longitudinal static force wind tunnel test results($ \beta = $0°)

    图 4  横航向静态测力试验结果

    Figure 4.  Lateral static force wind tunnel test results

    图 5  试验模型在风洞中的安装状态

    Figure 5.  Installation state of test model in wind tunnel

    图 6  三自由度转动机构

    Figure 6.  3-DOF rotate device

    图 7  虚拟飞行试验系统示意图

    Figure 7.  Diagram of virtual flight test system

    图 8  纵向操纵三轴开环响应结果

    Figure 8.  Three-axis open-loop responses results of longitudinal control

    图 9  姿态角速度变化曲线

    Figure 9.  Velocity variation curve of angular rates

    图 10  纵向操纵响应结果

    Figure 10.  Responses results of longitudinal control

    图 11  V尾编码器测量结果

    Figure 11.  V tail encoder measurement results

    图 12  偏航开环试验结果

    Figure 12.  Yaw open-loop test results

    图 13  迎角扰动响应曲线

    Figure 13.  Perturbation responses curves of angle of attack

    图 14  俯仰极限环振荡相平面曲线

    Figure 14.  Pitch limit cycle oscillation phase plan curve

    图 15  俯仰极限环振荡频率特性

    Figure 15.  Oscillation frequency characteristics of pitch limit cycle

    图 16  俯仰极限环振荡俯仰力矩特性

    Figure 16.  Characteristics of oscillating pitching moment of pitching limit cycle

    表  1  混合翼身融合布局民机几何参数

    Table  1.   Geometric parameters of hybrid wing body civil aircraft

    机翼面积S/m2 展长L/m 平均气动弦长c/m 参考中心与机头距离/m
    26.802 36 10.413 14.445
    下载: 导出CSV

    表  2  虚拟飞行试验参数相似准则(模型/原型机)[18]

    Table  2.   Scaling parameters for wind tunnel virtual flight test(sub-scale model/full-scale model prototype)[18]

    参数比例 参数比例
    线性尺寸$ N $ 弗劳德数${V^{2} }/{g l}$1
    线速度$ N^{0.5} $质量${m}/{l^{3} \rho}$1
    线加速度1惯量${J}/{l^{5} \rho}$1
    角速度$ N^{-0.5} $时间${ t } $$ N^{0.5} $
    角加速度$ N^{-1} $
    下载: 导出CSV
  • [1] KAWAI R. Acoustic prediction methodology and test validation for an efficient low-noise hybrid wing body subsonic transport: NF1676L-14465[R]. Washington, D. C. : NASA Langley Research Center, 2011.
    [2] REIST T A, ZINGG D W, RAKOWITZ M, et al. Multifidelity optimization of hybrid wing–body aircraft with stability and control requirements[J]. Journal of Aircraft, 2019, 56(2): 442-456. doi: 10.2514/1.C034703
    [3] LU Y, ZHANG S G, ZHANG Z J, et al. Multiple hierarchy risk assessment with hybrid model for safety enhancing of unmanned subscale BWB demonstrator flight test[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2612-2626. doi: 10.1016/j.cja.2019.09.010
    [4] RATLIFF C, MARQUART E. An assessment of a potential test technique: AIAA-1995-3415[R]. Reston: AIAA, 1995.
    [5] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 624-633. doi: 10.2514/1.39188
    [6] CARNDUFF S, ERBSLOEH S, COOKE A, et al. Development of a low cost dynamic wind tunnel facility utilizing MEMS inertial sensors[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
    [7] GATTO A, LOWENBERG M H. Evaluation of a three degree of freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6): 1747-1761. doi: 10.2514/1.19821
    [8] GATTO A. Application of a pendulum support test rig for aircraft stability derivative estimation[J]. Journal of Aircraft, 2009, 46(3): 927-934. doi: 10.2514/1.38916
    [9] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3 dof gimbal[C]//29th Congress of the International Council of the Aeronautical Sciences.Washington, D. C. : I CAS, 2014.
    [10] STENFELT G, RINGERTZ U. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5): 1807-1811. doi: 10.2514/1.C031017
    [11] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030.

    GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030(in Chinese).
    [12] 郭林亮, 祝明红, 吴海瀛, 等. 结冰条件下大型民机操稳特性研究与风洞虚拟飞行验证[C]//中国力学大会论文集, 2019: 3261-3271.

    GUO L L, ZHU M H, WU H Y, et al. Study on stability and controllability of large civil aircraft under icing conditions and verification via virtual flight in wind tunnel[C]//Proceedings of Chinese Conference of Theoretical and Applied Mechanics, 2019: 3261-3271.
    [13] 聂博文, 杨洪森, 刘志涛, 等. 倾转四旋翼无人机飞行控制系统集成与风洞虚拟飞行试验应用[C]//中国空气动力学会论文集, 2019: 162-167.

    NIE B W, YANG H S, LIU Z T, et al. Flight control system integration and wind tunnel virtual flight test of a quad-rotor aircraft[C]//Proceeding of Chinese Aerodynamics Research Society, 2019: 162-167(in Chinese).
    [14] 郭天豪. 飞翼布局飞机虚拟飞行试验报告[R]. 绵阳: 中国空气动力研究与发展中心, 2019.

    GUO T H. Report of wind tunnel virtual flight for a flying wing[R]. Mianyang: China Aerodynamics Research and Develoment Center, 2019(in Chinese).
    [15] 张石玉, 赵俊波, 付增良, 等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学, 2020, 34(1): 49-54.

    ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54(in Chinese).
    [16] 付军泉, 史志伟, 耿玺, 等. 基于试验分岔分析的翼身融合飞行器纵向稳定性[J]. 航空学报, 2022, 43(1): 124931. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201022

    FU J Q, SHI Z W, GENG X, et al. Longitudinal stability of blended-wing-body aircraft based on experimental bifurcation analysis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124931(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201022
    [17] 付军泉, 史志伟, 陈杰, 等. 一种翼身融合布局飞行器的偏离特性分析[J]. 实验流体力学, 2020, 34(6): 32-37.

    FU J Q, SHI Z W, CHEN J, et al. Departure characteristics of blended-wing-body aircraft[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 32-37(in Chinese).
    [18] 岑飞, 聂博文, 刘志涛, 等. 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017, 38(10): 121214.

    CEN F, NIE B W, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121214(in Chinese).
    [19] 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015: 4-5.

    LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 4-5 (in Chinese).
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  394
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-05-07
  • 网络出版日期:  2022-06-09
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答