留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多Agent的航空机群保障仿真评估分析

丁刚 崔利杰 韩诚 王新河 张峰

丁刚,崔利杰,韩诚,等. 基于多Agent的航空机群保障仿真评估分析[J]. 北京航空航天大学学报,2023,49(9):2306-2316 doi: 10.13700/j.bh.1001-5965.2021.0685
引用本文: 丁刚,崔利杰,韩诚,等. 基于多Agent的航空机群保障仿真评估分析[J]. 北京航空航天大学学报,2023,49(9):2306-2316 doi: 10.13700/j.bh.1001-5965.2021.0685
DING G,CUI L J,HAN C,et al. Simulation evaluation and analysis of aircraft group support based on multi-agent[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2306-2316 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0685
Citation: DING G,CUI L J,HAN C,et al. Simulation evaluation and analysis of aircraft group support based on multi-agent[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2306-2316 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0685

基于多Agent的航空机群保障仿真评估分析

doi: 10.13700/j.bh.1001-5965.2021.0685
基金项目: 技术基础科研计划(212KJ43005)
详细信息
    通讯作者:

    E-mail:baffulo@sina.com

  • 中图分类号: V221+.3;TB553

Simulation evaluation and analysis of aircraft group support based on multi-agent

Funds: Basic Scientific Research Program of Technology (212KJ43005)
More Information
  • 摘要:

    航空机群保障涉及要素广、策略多、交互性强,仿真分析方法是开展飞机保障决策与评估研究的热点和难点。提出一种机群保障仿真评估方法,建立多智能体(Agent)功能类型与交互关系模型;对多Agent结构进行定义,并建立模型;以五型飞机构成的航空机群为仿真对象,以任务成功率为保障指标进行案例验证与仿真计算分析。结果表明:各型飞机平均故障间隔时间(MTBF)、设备故障平均修复时间(MTTR)对任务成功率的影响总体趋势相似,随着MTBF的增加任务成功率提升,随着MTTR的增加任务成功率降低。所提方法能够为航空机群维修保障智能决策提供一种可行、有效的方法手段,支撑基于模型的智能决策优化实现。

     

  • 图 1  设备保障Agent基本功能类型和交互关系

    Figure 1.  Basic function types and interaction relationships of equipment support Agent

    图 2  飞机选取Agent功能设计

    Figure 2.  Aircraft selection Agent function design

    图 3  航空机群Agent外部交互和内部工作原理

    Figure 3.  Aircraft group Agent external interaction and internal working principle

    图 4  保障监控Agent设计

    Figure 4.  Guarantee monitoring Agent design

    图 5  A型-MTBF和A型-MTTR步长5%任务成功率敏感性分析

    Figure 5.  Sensitivity analysis of A type-MTBF and A type-MTTR step size 5% mission success rate

    图 6  B型-MTBF和B型-MTTR步长5%任务成功率敏感性分析

    Figure 6.  Sensitivity analysis of B type-MTBF and B type-MTTR step size 5% mission success rate

    图 7  C型-MTBF和C型-MTTR步长5%任务成功率敏感性分析

    Figure 7.  Sensitivity analysis of C type-MTBF and C type-MTTR step size 5% mission success rate

    图 8  D型-MTBF和D型-MTTR步长5%任务成功率敏感性分析

    Figure 8.  Sensitivity analysis of D type-MTBF and D type-MTTR step size 5% mission success rate

    图 9  E型-MTBF和E型-MTTR 步长5%任务成功率敏感性分析

    Figure 9.  Sensitivity analysis of E type-MTBF , and E type-MTTR step size 5% mission success rate

    图 10  A型-MTBF-5%和A型-MTTR-20%步长任务成功率敏感性分析

    Figure 10.  Sensitivity analysis of A type-MTBF-5% and A type-MTTR-20% step size mission success rate

    图 11  B型-MTBF-5%、B型-MTTR-20%步长任务成功率敏感性分析

    Figure 11.  Sensitivity analysis of B type-MTBF-5% and B type-MTTR-20% step size mission success rate

    图 12  C型-MTBF-5%、C型-MTTR-20%步长任务成功率敏感性分析

    Figure 12.  Sensitivity analysis of C type-MTBF-5% and C type-MTTR-20% step size mission success rate

    图 13  D型-MTBF-5%、D型-MTTR-20%步长任务成功率敏感性分析

    Figure 13.  Sensitivity analysis of D type-MTBF-5% and D type-MTTR-20% step size mission success rate

    图 14  E型-MTBF-5%、E型-MTTR-20%步长任务成功率敏感性分析

    Figure 14.  Sensitivity analysis of E type-MTBF-5% and E type-MTTR-20% step size mission success rate

    图 15  综合敏感性分析图

    Figure 15.  Comprehensive sensitivity analysis chart

    表  1  仿真计算初始输入

    Table  1.   Initial input of simulation calculation

    机型数量/架滞空时间/min任务时间/min构型要求(k/nMTBF/hMTTR/h
    第1阶段第2阶段第3阶段第1阶段第2阶段第3阶段
    A321012861/21/22/3[300,20][10,2]
    B1021067/10[330,25][6,2]
    C169012865/87/1010/16[200,30][5,1]
    D8180864/66/8[300,50][7,2]
    E621064/6[350,30][8,2]
    下载: 导出CSV

    表  2  任务强度敏感性分析

    Table  2.   Mission intensity sensitivity analysis

    类别序号敏感性因素RR变化
    幅度/%
    初始值变化值
    各机型
    MTBF
    1 A型-MTBF增
    加20%(300~360)
    0.48 0.526 9.6
    2 B型-MTBF增
    加20%(330~396)
    0.48 0.52 8.3
    3 C型-MTBF增
    加20%(200~240)
    0.48 0.53 10.4
    4 D型-MTBF增
    加20%(300~360)
    0.48 0.58 20.8
    5 E型-MTBF增
    加20%(350~420)
    0.48 0.49 2.1
    各机型
    MTTR
    6 A型-MTTR增
    加20%(10~12)
    0.48 0.44 −8.3
    7 B型-MTTR增
    加20%(6~7.2)
    0.48 0.43 −10.4
    8 C型-MTTR增
    加20%(5~6)
    0.48 0.42 −12.5
    9 D型-MTTR增
    加20%(7~8.4)
    0.48 0.39 −18.8
    10 E型-MTTR增
    加20%(8~9.6)
    0.48 0.41 −14.6
    任务
    强度
    11 A型飞机任务强度
    降低20%(2/3→1/3)
    0.48 0.60 25.8
    12 B型飞机任务强度
    降低20%(5/10→4/10)
    0.48 0.51 6.9
    13 C型飞机任务强度
    降低20%(4/10→3/10)
    0.48 0.56 16.7
    14 D型飞机任务强度
    降低20%(6/8→5/8)
    0.48 0.65 35.4
    15 E型飞机任务强度
    降低20%(4/6→3/6)
    0.48 0.51 6.3
    阶段任
    务时间
    16 第1阶段时间
    减少20%(9.6 h)
    0.48 0.52 8.3
    17 第2阶段时间
    减少20%(6.4 h)
    0.48 0.50 4.2
    18 第3阶段时间
    减少20%(4.8 h)
    0.48 0.49 2.1
    下载: 导出CSV
  • [1] 汤润泽, 张承龙, 李林林, 等. 多武器跨域智能协同对空作战应用及关键技术[J]. 现代防御技术, 2021, 49(2): 26-34. doi: 10.3969/j.issn.1009-086x.2021.02.005

    TANG R Z, ZHANG C L, LI L L, et al. Research on applications and key technologies of multi-weapons in cross-domain intelligent coordination air combat[J]. Modern Defence Technology, 2021, 49(2): 26-34(in Chinese). doi: 10.3969/j.issn.1009-086x.2021.02.005
    [2] 丁刚, 张琳, 崔利杰, 等. 航空装备体系保障性分析仿真运行控制[J]. 舰船电子工程, 2021, 41(1): 58-62. doi: 10.3969/j.issn.1672-9730.2021.01.014

    DING G, ZHANG L, CUI L J, et al. Simulation operation control of aviation equipment system of system supportability analysis[J]. Ship Electronic Engineering, 2021, 41(1): 58-62(in Chinese). doi: 10.3969/j.issn.1672-9730.2021.01.014
    [3] 丁刚, 张琳, 崔利杰, 等. 基于任务的航空装备保障体系概念建模研究[J]. 军事运筹与系统工程, 2020, 34(1): 39-46.

    DING G, ZHANG L, CUI L J, et al. Research on concept modeling of mission-based aviation equipment support system of systems[J]. Military Operations Research and Systems Engineering, 2020, 34(1): 39-46(in Chinese).
    [4] 崔利杰, 丛继平, 丁刚, 等. 基于不确定性的航空装备体系保障性评估[J]. 北京航空航天大学学报, 2021, 47(12): 2452-2461. doi: 10.13700/j.bh.1001-5965.2020.0490

    CUI L J, CONG J P, DING G, et al. Supportability evaluation of aviation equipment system based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2452-2461(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0490
    [5] 杨东昌, 马永忠, 宋科. 武器装备体系需求论证研究[J]. 中国设备工程, 2021(12): 250-251. doi: 10.3969/j.issn.1671-0711.2021.12.158

    YANG D C, MA Y Z, SONG K. Research on requirement demonstration of weapon equipment system[J]. China Plant Engineering, 2021(12): 250-251(in Chinese). doi: 10.3969/j.issn.1671-0711.2021.12.158
    [6] 姜忠钦, 张明智, 张斌, 等. 基于仿真的武器装备体系论证关键问题研究[J]. 装备指挥技术学院学报, 2009, 20(5): 19-23.

    JIANG Z Q, ZHANG M Z, ZHANG B, et al. Study on key questions of weapon system-of-systems demonstration based on simulation[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20(5): 19-23(in Chinese).
    [7] KAVIARI F, MESGARI M S, SEIDI E, et al. Simulation of urban growth using agent-based modeling and game theory with different temporal resolutions[J]. Cities, 2019, 95: 102387. doi: 10.1016/j.cities.2019.06.018
    [8] NGUYEN N D, NGUYEN T, NAHAVANDI S. Multi-agent behavioral control system using deep reinforcement learning[J]. Neurocomputing, 2019, 359: 58-68. doi: 10.1016/j.neucom.2019.05.062
    [9] HUANG J, CAO M, ZHOU N, et al. Distributed behavioral control for second-order nonlinear multi-agent systems[J]. IFAC-PapersOnLine, 2017, 50(1): 2445-2450. doi: 10.1016/j.ifacol.2017.08.407
    [10] 黄柯棣, 刘宝宏, 黄健, 等. 作战仿真技术综述[J]. 系统仿真学报, 2004, 16(9): 1887-1895. doi: 10.3969/j.issn.1004-731X.2004.09.011

    HUANG K D, LIU B H, HUANG J, et al. A survey of military simulation technologies[J]. Acta Simulata Systematica Sinica, 2004, 16(9): 1887-1895(in Chinese). doi: 10.3969/j.issn.1004-731X.2004.09.011
    [11] 李宏亮, 程华, 金士尧. 基于Agent的复杂系统分布仿真建模方法的研究[J]. 计算机工程与应用, 2007, 43(8): 209-213. doi: 10.3321/j.issn:1002-8331.2007.08.065

    LI H L, CHENG H, JIN S Y. Research of modeling method for Agent-based complex systems distributed simulation[J]. Computer Engineering and Applications, 2007, 43(8): 209-213(in Chinese). doi: 10.3321/j.issn:1002-8331.2007.08.065
    [12] 饶明波. 基于Agent战场仿真实体模型研究与实现[D]. 南京: 南京航空航天大学, 2011.

    RAO M B. Agent-based battlefield simulation entity model research and implementation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
    [13] 陈坚, 廖守亿, 邓方林. 基于多Agent系统的计算机生成兵力建模研究[J]. 系统工程与电子技术, 2008, 30(10): 1924-1928. doi: 10.3321/j.issn:1001-506X.2008.10.026

    CHEN J, LIAO S Y, DENG F L. On modeling computer generated forces based on multi-agent systems[J]. Systems Engineering and Electronics, 2008, 30(10): 1924-1928(in Chinese). doi: 10.3321/j.issn:1001-506X.2008.10.026
    [14] 阿纳达·佩雷兹·卡斯塔诺. 人工智能实战[M]. 敖富江, 周云彦, 李博, 等, 译, 北京: 清华大学出版社, 2019: 27-29, 51-73.

    AMALDO P C. Practical artificial intelligence[M]. AO F J, ZHOU Y Y, Li B, et al. translated. Beijing: Tsinghua University Press, 2019: 27-29, 51-73 (in Chinese).
    [15] 武强. 多智能体强化学习在城市交通信号控制中的研究与应用[D]. 兰州: 兰州大学, 2020.

    WU Q. Research and application of multi-agent reinforcement learning in traffic signal control[D]. Lanzhou: Lanzhou University, 2020 (in Chinese).
    [16] 梁鹏, 王海燕, 王耀辉. 由反应式Agent构造智能Agent的方法[J]. 东北电力大学学报(自然科学版), 2008, 28(2): 94-97.

    LIANG P, WANG H Y, WANG Y H. The method by reflection type agent structure intelligence agent[J]. Journal of Northeast Dianli University (Natural Science Edition), 2008, 28(2): 94-97(in Chinese).
    [17] MOSTAFA S A, MUSTAPHA A, GUNASEKARAN S S, et al. An agent architecture for autonomous UAV flight control in object classification and recognition missions[J]. Soft Computing, 2023, 27(1): 391-404. doi: 10.1007/s00500-021-05613-8
    [18] TAJALLI S Z, KAVOUSI-FARD A, MARDANEH M. Multi-agent-based optimal power scheduling of shipboard power systems[J]. Sustainable Cities and Society, 2021, 74: 103137. doi: 10.1016/j.scs.2021.103137
    [19] SHPILEVOY V, SHISHOV A, SKOBELEV P, et al. Multi-agent system “Smart Factory” for real-time workshop management in aircraft jet engines production[J]. IFAC Proceedings Volumes, 2013, 46(7): 204-209. doi: 10.3182/20130522-3-BR-4036.00025
    [20] LU Z Y, ZHUANG Z L, HUANG Z Z, et al. A framework of multi-agent based intelligent production logistics system[J]. Procedia CIRP, 2019, 83: 557-562. doi: 10.1016/j.procir.2019.04.116
    [21] ZHANG X, SUN Y C, ZHANG Y J, et al. Multi-agent modelling and situational awareness analysis of human-computer interaction in the aircraft cockpit: A case study[J]. Simulation Modelling Practice and Theory, 2021, 111: 102355. doi: 10.1016/j.simpat.2021.102355
    [22] LIU X, GE S S. Optimized control for human-multi-robot collaboration via multi-agent adaptive dynamic programming[J]. IFAC-PapersOnLine, 2020, 53(2): 9207-9212. doi: 10.1016/j.ifacol.2020.12.2189
    [23] ZHANG L X, LI J C, ZHU Y A, et al. Multi-agent reinforcement learning by the actor-critic model with an attention interface[J]. Neurocomputing, 2022, 471: 275-284. doi: 10.1016/j.neucom.2021.06.049
    [24] CASTRO B M, MELO Y D AD, SANTOS N F D, et al. Multi-agent simulation model for the evaluation of COVID-19 transmission[J]. Computers in Biology and Medicine, 2021, 136: 104645. doi: 10.1016/j.compbiomed.2021.104645
    [25] VALLEJO D, CASTRO-SCHEZ J J, GLEZ-MORCILLO C, et al. Multi-agent architecture for information retrieval and intelligent monitoring by UAVs in known environments affected by catastrophes[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103243. doi: 10.1016/j.engappai.2019.103243
    [26] NING H, SHI Y B, GAO X J. Dynamic simulation of the equipment repair support system based on the OPN model[J]. Procedia Engineering, 2011, 23: 284-289. doi: 10.1016/j.proeng.2011.11.2503
    [27] ZHANG W J, KANG R, GUO L H, et al. Study on military equipment support modeling and simulation[J]. Chinese Journal of Aeronautics, 2005, 18(2): 142-146. doi: 10.1016/S1000-9361(11)60319-1
    [28] GRADY J O. System modeling using the DoD architecture framework[C]//System Requirements Analysis. Amsterdam: Elsevier, 2006: 275-287.
    [29] 李亢, 李新明, 刘东. 基于语义元模型的装备体系结构建模方法[J]. 系统工程与电子技术, 2015, 37(11): 2503-2512. doi: 10.3969/j.issn.1001-506X.2015.11.13

    LI K, LI X M, LIU D. Modeling method for weapon system of systems structure based on semantic meta-model[J]. Systems Engineering and Electronics, 2015, 37(11): 2503-2512(in Chinese). doi: 10.3969/j.issn.1001-506X.2015.11.13
    [30] 尹丽丽, 寇力, 范文慧. 基于多Agent的装备保障体系分布式建模与仿真方法[J]. 系统仿真学报, 2017, 29(12): 3185-3194. doi: 10.16182/j.issn1004731x.joss.201712032

    YIN L L, KOU L, FAN W H. Distributed modeling and simulation method of equipment support system based on multi agent[J]. Journal of System Simulation, 2017, 29(12): 3185-3194(in Chinese). doi: 10.16182/j.issn1004731x.joss.201712032
    [31] 邢彪, 曹军海, 宋太亮. 基于多Agent仿真的装备保障体系供应保障系统设计与实现[J]. 指挥控制与仿真, 2016, 38(2): 102-105. doi: 10.3969/j.issn.1673-3819.2016.02.021

    XING B, CAO J H, SONG T L. Design and implementation for the supply support system of equipment support system of systems based on multi-agent simulation[J]. Command Control & Simulation, 2016, 38(2): 102-105(in Chinese). doi: 10.3969/j.issn.1673-3819.2016.02.021
    [32] 尹延涛, 徐衡博, 高杰, 等. 基于Multi-Agent的导弹装备军民一体化维修保障决策支持系统研究[J]. 质量与可靠性, 2012(4): 12-14.

    YIN Y T, XU H B, GAO J, et al. Research on multi-agent-based decision support system for military-civilian integrated maintenance support of missile equipment[J]. Quality and Reliability, 2012(4): 12-14(in Chinese).
    [33] 黄海, 曹军海, 单志伟. 基于MAS的装备综合保障仿真系统设计[J]. 装甲兵工程学院学报, 2008, 22(3): 17-21. doi: 10.3969/j.issn.1672-1497.2008.03.005

    HUANG H, CAO J H, SHAN Z W. Design of the MAS-based material integrated support simulation system[J]. Journal of Academy of Armored Force Engineering, 2008, 22(3): 17-21(in Chinese). doi: 10.3969/j.issn.1672-1497.2008.03.005
    [34] 王步云, 张国. 一种适用于人工生命作战仿真的混合Agent结构[J]. 系统仿真学报, 2010, 22(11): 2515-2518. doi: 10.16182/j.cnki.joss.2010.11.070

    WANG B Y, ZHANG G. Mixed agent architecture for warfare-simulation based on artificial life[J]. Journal of System Simulation, 2010, 22(11): 2515-2518(in Chinese). doi: 10.16182/j.cnki.joss.2010.11.070
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  873
  • HTML全文浏览量:  48
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-03-22
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答