-
摘要:
超声速民机较高的飞行速度导致发动机短舱与机翼机身存在强烈的气动干扰,且高速喷流会改变主流的激波系结构,进而影响声爆强度。以超声速民机为研究对象,对不同短舱布局开展数值模拟研究,揭示发动机短舱位置、数量对近场过压信号特性的影响规律。数值模拟运用有限体积法在直角网格上求解流体控制方程进行,通过伴随自适应网格加密生成高分辨率网格以精确捕捉近场过压信号。结果表明:发动机进气道唇口激波、尾喷口后缘激波及尾喷流与机体机翼引起的激波系存在强烈的相互干扰,一定程度上增加了近场过压幅值,从而增强了声爆强度。短舱沿弦向前移及置于机翼上方可以有效降低声爆强度,沿展向外移通过抑制尾部各激波的合并也可有效降低声爆强度;在相同总推力前提下,相比三发构型,双发构型能有效降低后体激波强度,但较大尺寸的短舱引起较强的进气道唇口激波。综合考虑喷流噪声和气动阻力因素,翼下双发布局对于新一代超声速民机并非最佳选项。
Abstract:The strong aerodynamic interaction between the nacelles and the wing-body at supersonic speed, and the effect of the exhaust plume on the mainstream shock wave structure could have a great influence on the sonic boom loudness. This paper carries out a numerical investigation on the effect of nacelle layout on thesonic boom for a supersonic transport configuration where the supersonic flows and near field pressure signatures are computed by using a finite volume solver and an adjoint-based Cartesian adaptive mesh refinement method. Various relative positions of nacelles with respect to the wing andthe different number of nacelles are considered. Results indicate that the shock and expansion waves caused by the wing-body combination are significantly interfered with by the lip shock at the inlet, the nozzle trailing edge shock, and the expansion and aft shock of the nozzle plume. This increases the amplitude of the pressure signatures and subsequently increases the sonic boom loudness.Compared with the baseline, the ground loudness can be effectively suppressed by moving the nacelles forward along the chord, outward along the span-wise, and mounting above the wing. Under the same overall force and with the same number of engines and nacelles, the configuration with twin nacelles can reduce the aft shock, but the larger nacelle results in a stronger lip shock at the intake, increasing the loudness of the sonic boom. Thus, considering the engine noise and aerodynamic drag, it is not recommended to deploy twin nacelles for next-generation supersonic transport.
-
Key words:
- supersonic transport /
- nacelle layout /
- sonic boom /
- adaptive mesh /
- Cartesian mesh
-
表 1 不同构型短舱相对基础构型的偏移量
Table 1. Offsets of nacelles from baseline configuration
构型 展向偏移量/d 轴向偏移量/d 纵向偏移量/d 基础构型 0 0 0 D3−Δx 0 −0.7 0 D3+Δx 0 0.7 0 D3−0.5Δy −0.5 0.12 0 D3+Δy 1 0.5 0 D3+2Δy 2 1 0 U3 0 0 1.54 D2 0 0 0 注:偏移量均为以喷管直径d为基准的相对量。编号含义如下:轴向从机头到机尾方向为正,展向从翼根到翼梢方向为正,采用右手坐标系。D (down)表示短舱置于机翼下方,U (up) 表示短舱置于机翼上方;3或2表示发动机数量;Δx/Δy表示短舱沿弦向/展向移动,其中,Δy等于一个喷管直径;+/−表示发动机沿对应坐标轴正/负向移动。 表 2 自由来流条件及发动机动力参数
Table 2. Conditions of freestream and propulsion system parameters
参数 数值 来流马赫数 1.6 来流静温/K 211.96 发动机风扇入口静压比 3.2606 发动机风扇入口密度比 14.54 发动机风扇入口马赫数 0.6093 雷诺数 8.1×106 来流静压/Pa 25894.936 发动机尾喷口落压比 14.54 发动机尾喷口总温比 7.8722 发动机尾喷口马赫数 0.6620 -
[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528(in Chinese). [2] 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619.QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619(in Chinese). [3] 王迪, 冷岩, 杨龙, 等. 基于广义Burgers方程的声爆传播特性大气湍流影响研究[J]. 航空学报, 2023, 44(2): 626318.WANG D, LENG Y, YANG L, et al. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626318(in Chinese). [4] 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散研究[J]. 航空学报, 2022, 43(1): 124916.WANG D, QIAN Z S, LENG Y. High-order scheme discretization of the sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124916(in Chinese). [5] 冯晓强, 李占科, 宋笔锋. 超声速客机音爆问题初步研究[J]. 飞行力学, 2010, 28(6): 21-23.FENG X Q, LI Z K, SONG B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6): 21-23(in Chinese). [6] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1): 169-181.WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 169-181(in Chinese). [7] 乔建领, 韩忠华, 丁玉临, 等. 基于非线性Burgers方程的超声速客机远场声爆预测方法[C]//首届中国空气动力学大会, 2018.QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on nonlinear Burgers equation[C]//The First Chinese Conference of Aerodynamics, 2018(in Chinese). [8] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674.QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674(in Chinese). [9] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039.ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039(in Chinese). [10] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2): 359-365.CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power, 2010, 25(2): 359-365(in Chinese). [11] 冯晓强, 宋笔锋, 李占科. 低声爆静音锥设计方法研究[J]. 航空学报, 2013, 34(5): 1009-1017.FENG X Q, SONG B F, LI Z K. Research of low sonic boom quiet spike design method[J]. Acta Aeronautica et Astronautica Sintca, 2013, 34(5): 1009-1017(in Chinese). [12] 李占科, 刘秧, 丁玉临, 等. 静音锥对超声速民机低声爆效果的影响[J]. 西北工业大学学报, 2019, 37(1): 203-210. doi: 10.3969/j.issn.1000-2758.2019.01.028LI Z K, LIU Y, DING Y L, et al. Influence of quiet spike on supersonic transport for low boom effect[J]. Journal of Northwestern Polytechnical University, 2019, 37(1): 203-210(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.01.028 [13] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11): 1980-1986.FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1980-1986(in Chinese). [14] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 25-65.HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 25-65(in Chinese). [15] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese). [16] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736.QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736(in Chinese). [17] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505.HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505(in Chinese). [18] CAPONE F J, PUTNAM L E. Experimental determination of equivalent solid bodies to represent jets exhausting into a Mach 2.20 external stream: NASA-TN-D-5553[R]. Washington, D. C. : NASA, 1969. [19] BUI T. CFD analysis of the nozzle jet plume effects on sonic boom signature: AIAA 2009-1054[R]. Reston: AIAA, 2009. [20] CASTNER R. Analysis of plume effects on sonic boom signature for isolated nozzle configurations: AIAA 2008-3729[R]. Reston: AIAA, 2008. [21] CASTNER R. Analysis of exhaust plume effects on sonic boom for a 59-degree wing body model: AIAA 2011-917[R]. Reston: AIAA, 2011. [22] HOWE D. Engine placement for sonic boom mitigation: AIAA-2002-0148[R]. Reston: AIAA, 2002. [23] CASTNER R, LAKE T. Exhaust plume effects on sonic boom for a delta wing and swept wing-body model: AIAA 2012-1033[R]. Reston: AIAA, 2012. [24] 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报, 2014, 32(1): 30-37. doi: 10.7638/kqdlxxb-2012.0071FENG X Q, LI Z K, SONG B F, et al. Optimization of sonicboom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica, 2014, 32(1): 30-37(in Chinese). doi: 10.7638/kqdlxxb-2012.0071 [25] KIM H, LEE M. Flow simulation of a supersonic airplane with installed engine nacelle[J]. Aerospace Science and Technology, 2021, 117: 106900. doi: 10.1016/j.ast.2021.106900 [26] CLIFF S E, DURSTON D, CHAN W M, et al. Computational and experimental assessment of models for the first AIAA sonic boom prediction workshop: AIAA 2014-0560[R]. Reston: AIAA, 2014. [27] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005.LIAN X C, WU H. Principle of aeroengine[M]. Xi’an: Northwestern Polytechnical University Press, 2005(in Chinese). [28] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5 [29] VENKATAKRISHNAN V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J]. Journal of Computational Physics, 1995, 118(1): 120-130. doi: 10.1006/jcph.1995.1084 [30] 吕凡熹, 肖天航, 余雄庆. 基于自适应直角网格的二维全速势方程有限体积解法[J]. 计算力学学报, 2016, 33(3): 424-430.LYU F X, XIAO T H, YU X Q. A finite volume method for 2D full-potential equation on adaptive Cartesian grids[J]. Chinese Journal of Computational Mechanics, 2016, 33(3): 424-430(in Chinese). [31] 吕凡熹, 李正洲, 邓经枢, 等. 面向飞行器概念设计的全速域气动分析工具[J]. 空气动力学学报, 2017, 35(5): 625-632.LYU F X, LI Z Z, DENG J S, et al. An aerodynamic analysis tool for aircraft conceptual design at full speed range[J]. Acta Aerodynamica Sinica, 2017, 35(5): 625-632(in Chinese). [32] WARREN G, ANDERSON W, THOMAS J, et al. Grid convergence for adaptive methods: AIAA-91-1592[R]. Reston: AIAA, 1991. [33] 李立, 白文, 梁益华. 基于伴随方程方法的非结构网格自适应技术及应用[J]. 空气动力学学报, 2011, 29(3): 309-316.LI L, BAI W, LIANG Y H. An adjoint-based method for unstructured mesh adaptation and its applications[J]. Acta Aerodynamica Sinica, 2011, 29(3): 309-316(in Chinese). [34] 朱震浩, 肖天航, 徐雅楠, 等. 基于直角网格伴随自适应的声爆预测[J/OL]. 北京航空航天大学学报, 2022(2022-01-25) [2022-04-01]. https://link.cnki.net/urlid/11.2625.V.20220124.1709.004.ZHU Z H, XIAO T H, XU Y N, et al. Adjoint-based adaptive cartesian mesh refinement for sonic boom prediction[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2022(2022-01-25) [2022-04-01]. https://link.cnki.net/urlid/11.2625.V.20220124.1709.004(in Chinese). [35] PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2016, 53(2): 578-598. doi: 10.2514/1.C033449 [36] WINSKI C S, CARTER M B, ELMILIGUI A A, et al. Computational and experimental study of plume and shock interaction effects on sonic boom in the NASA Ames 9×7 supersonic wind tunnel: AIAA 2018-0331[R]. Reston: AIAA, 2018. [37] PARK M A, NEMEC M. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 851-875. doi: 10.2514/1.C034866