留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SERF原子自旋惯性测量检测误差分析及抑制

邢力 全伟 宋天骁 蔡庆中 叶文

邢力,全伟,宋天骁,等. SERF原子自旋惯性测量检测误差分析及抑制[J]. 北京航空航天大学学报,2023,49(9):2345-2350 doi: 10.13700/j.bh.1001-5965.2021.0691
引用本文: 邢力,全伟,宋天骁,等. SERF原子自旋惯性测量检测误差分析及抑制[J]. 北京航空航天大学学报,2023,49(9):2345-2350 doi: 10.13700/j.bh.1001-5965.2021.0691
XING L,QUAN W,SONG T X,et al. Error analysis and suppression of probe system for SERF atomic spin co-magnetometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2345-2350 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0691
Citation: XING L,QUAN W,SONG T X,et al. Error analysis and suppression of probe system for SERF atomic spin co-magnetometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2345-2350 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0691

SERF原子自旋惯性测量检测误差分析及抑制

doi: 10.13700/j.bh.1001-5965.2021.0691
基金项目: 国家自然科学基金(61803015);中国博士后科学基金(2021M703049)
详细信息
    通讯作者:

    E-mail:qingzhong_cai@buaa.edu.cn

  • 中图分类号: V249.3;TN294

Error analysis and suppression of probe system for SERF atomic spin co-magnetometer

Funds: National Natural Science Foundation of China (61803015);China Postdoctoral Science Foundation (2021M703049)
More Information
  • 摘要:

    在无自旋交换弛豫(SERF)原子自旋惯性测量装置中,检测系统的性能是决定输出信号灵敏度和稳定性极限的关键因素。为有效抑制SERF原子自旋惯性测量的低频随机噪声,在横向电子自旋极化率稳态解和旋光角表达式的基础上,建立检测相关的输出信号误差机理模型,明确了检测系统影响最终测量信号噪声的主要因素。研究结果表明:检测光入射气室时的初始光强作为信号背景直接引起刻度系数的波动而非作用于电子自旋,而检测光的非理想线偏振导致电子自旋产生横向抽运效果和横向光频移作用,从而引入测量误差。针对检测系统影响测量信号噪声的主要参数,设计了参数优化路径:先通过优化检测光频率,提高惯性测量刻度系数,后通过检测光功率的优化,减小横向抽运效应、横向光频移作用及检测光背景波动。实验表明:通过对比输出信号的Allan方差,优化后SERF原子自旋惯性测量的零偏不稳定性减小了1.8倍,速率斜坡噪声系数从0.124 (º)/h2减小至0.041 (º)/h2,达到了抑制测量信号低频随机噪声的效果。

     

  • 图 1  基于偏振平衡分束的检测光光路示意图

    Figure 1.  Schematic diagram of probe beam based on polarization balance difference optical path

    图 2  输出信号随检测光波长变化关系仿真

    Figure 2.  Simulation of relationship between output signal and probe light wavelength

    图 3  检测光波长与惯性测量刻度系数的实测关系

    Figure 3.  Measurement results of relationship between probe light wavelength and scale coefficients for co-magnetometer

    图 4  激光器控制电流与检测光功率关系标定

    Figure 4.  Measurement results of relationship between laser control current and probe light power

    图 5  检测光功率优化惯性测量输出信号Allan方差分析

    Figure 5.  Allan variance analysis for output signals of the co-magnetometer optimized by probe light power

    图 6  不同检测光功率下Allan方差的零偏不稳定性和速率斜坡系数

    Figure 6.  Bias instability and rate ramp coefficient of Allan variance under different probe light power

  • [1] 郭雷, 房建成. 导航制导与传感技术研究领域若干问题的思考与展望[J]. 中国科学:信息科学, 2017, 47(9): 1198-1208. doi: 10.1360/N112016-00275

    GUO L, FANG J C. Recent prospects on some problems of navigation guidance and sensing technology[J]. Scientia Sinica (Informationis), 2017, 47(9): 1198-1208(in Chinese). doi: 10.1360/N112016-00275
    [2] 薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2): 1-9.

    XUE L L, CHEN S C, CHEN X Z. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2): 1-9(in Chinese).
    [3] HU Z X, GALLACHER B J. Effects of nonlinearity on the angular drift error of an electrostatic MEMS rate integrating gyroscope[J]. IEEE Sensors Journal, 2019, 19(22): 10271-10280. doi: 10.1109/JSEN.2019.2929352
    [4] LEFÈVRE H C. The fiber-optic gyroscope[M]. Boston: Artech House, 1993.
    [5] LEE B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79. doi: 10.1016/S1068-5200(02)00527-8
    [6] KETTERLE W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser[J]. Reviews of Modern Physics, 2002, 74(4): 1131-1151. doi: 10.1103/RevModPhys.74.1131
    [7] CHU S. Cold atoms and quantum control[J]. Nature, 2002, 416(6877): 206-210. doi: 10.1038/416206a
    [8] GUSTAVSON T L, BOUYER P, KASEVICH M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046-2049. doi: 10.1103/PhysRevLett.78.2046
    [9] WOODMAN K F, FRANKS P W, RICHARDS M D. The nuclear magnetic resonance gyroscope: A review[J]. Journal of Navigation, 1987, 40(3): 366-384. doi: 10.1017/S037346330000062X
    [10] KORNACK T W, GHOSH R K, ROMALIS M V. Nuclear spin gyroscope based on an atomic comagnetometer[J]. Physical Review Letters, 2005, 95(23): 230801. doi: 10.1103/PhysRevLett.95.230801
    [11] ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801. doi: 10.1103/PhysRevLett.89.130801
    [12] SMICIKLAS M A, BROWN J M, CHEUK L W, et al. New test of local Lorentz invariance using a 21Ne-Rb-K Comagnetometer[J]. Physical Review Letters, 2011, 107(17): 171604. doi: 10.1103/PhysRevLett.107.171604
    [13] SMICIKLAS M A, ROMALIS M V. Test of Lorentz invariance with Rb-21Ne co-magnetometer at the south pole[C]//Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry. Bloomington: World Scientific Publishing House, 2014: 95-98.
    [14] ROMALIS M V, KORNACK T. Chip-scale combinatorial atomic navigator (C-SCAN) low drift nuclear spin gyroscope: 125560431[R]. Princeton: Princeton University, 2018.
    [15] LIMES M E, SHENG D, ROMALIS M V. 3He-129Xe comagnetometery using 87Rb detection and decoupling[J]. Physical Review Letters, 2018, 120(3): 033401. doi: 10.1103/PhysRevLett.120.033401
    [16] BUDKER D, GAWLIK W, KIMBALL D F, et al. Resonant nonlinear magneto-optical effects in atoms[J]. Reviews of Modern Physics, 2002, 74(4): 1153-1201. doi: 10.1103/RevModPhys.74.1153
    [17] XING L, ZHAI Y Y, FAN W F, et al. Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope[J]. Optics Express, 2019, 27(26): 38061. doi: 10.1364/OE.27.038061
    [18] VASILAKIS G. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 2011.
    [19] CHOUDHURI A R. Classical electrodynamics[J]. Current Science, 2015, 109(3): 632-633.
    [20] KORNACK T W. A test of CPT and Lorentz symmetry using a K-3He co-magnetometer[D]. Princeton: Princeton University, 2005.
    [21] 张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2008.

    ZHANG G C. The principles and technologies of fiber-optic gyroscope[M]. Beijing: National Defense Industry Press, 2008 (in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  686
  • HTML全文浏览量:  35
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答