留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弱监督的遥感图像镶嵌质量盲评价

潘林朋 谢凤英 赵薇薇 周颖 刘畅 王艳

潘林朋,谢凤英,赵薇薇,等. 基于弱监督的遥感图像镶嵌质量盲评价[J]. 北京航空航天大学学报,2023,49(9):2518-2526 doi: 10.13700/j.bh.1001-5965.2021.0694
引用本文: 潘林朋,谢凤英,赵薇薇,等. 基于弱监督的遥感图像镶嵌质量盲评价[J]. 北京航空航天大学学报,2023,49(9):2518-2526 doi: 10.13700/j.bh.1001-5965.2021.0694
PAN L P,XIE F Y,ZHAO W W,et al. Weak supervision based blind remote sensing image mosaic quality assessment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2518-2526 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0694
Citation: PAN L P,XIE F Y,ZHAO W W,et al. Weak supervision based blind remote sensing image mosaic quality assessment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2518-2526 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0694

基于弱监督的遥感图像镶嵌质量盲评价

doi: 10.13700/j.bh.1001-5965.2021.0694
基金项目: 国家重点研发计划(2019YFC1510905);国家自然科学基金(61871011)
详细信息
    作者简介:

    潘林朋 男,硕士。主要研究方向:遥感图像质量评价

    谢凤英 女,博士,教授,博士生导师。主要研究方向:医学图像处理、遥感图像理解和应用、图像质量评估

    赵薇薇 女,硕士,正高级工程师。主要研究方向:卫星数据处理与应用、遥感图像质量评价与提升

    周颖 女,硕士,工程师。主要研究方向:遥感图像处理与智能信息提取、遥感图像质量评价

    刘畅 男,博士。主要研究方向:红外弱小目标检测、遥感图像质量评价

    王艳 女,硕士,高级工程师。主要研究方向:高分辨率遥感图像高精度处理、遥感图像质量评价

    通讯作者:

    E-mail:xfy_73@buaa.edu.cn

  • 中图分类号: TP751.1

Weak supervision based blind remote sensing image mosaic quality assessment

Funds: National Key R&D Program of China (2019YFC1510905); National Natural Science Foundation of China (61871011)
More Information
  • 摘要:

    遥感图像镶嵌是遥感图像解译的一项重要研究内容,然而受成像时间、角度及地物纹理的影响,镶嵌图像经常会有颜色不一致、地物结构错位等情况。针对遥感图像镶嵌缝两侧出现的颜色差异、地物结构错位等质量问题,设计了双分支网络进行遥感图像镶嵌质量的盲评价,2个分支网络分别用于镶嵌缝两侧颜色差异评价和结构错位评价,综合2个网络的输出实现遥感图像镶嵌质量的综合评价。由于获得图像的质量真值需要耗费大量的人力物力,为了减少训练卷积网络所需要的数据量,提出了一种基于两阶段训练的弱监督学习策略,第1阶段在仿真的镶嵌数据集上以颜色差异量和结构错位量为客观真值对网络进行预训练,学习与质量评价有关的先验知识,第2阶段在有主观质量真值的数据集上进行微调。在建立的带有质量真值的仿真数据集和真实数据集上的实验结果表明:所提方法能够有效评价遥感图像镶嵌的质量,性能优于对比方法。

     

  • 图 1  一组来自NWPU-RESISC45[18]数据集中的图像

    Figure 1.  A set of images from NWPU-RESISC45[18] dataset

    图 2  仿真生成的一组图像

    Figure 2.  A set of images generated by simulation

    图 3  实验中使用的一幅具有结构错位和颜色差异的真实遥感镶嵌图像

    Figure 3.  A real remote sensing mosaic image with structural dislocation and color difference used in experiment

    图 4  双分支卷积神经网络

    Figure 4.  Two-branch convolutional neural network

    图 5  两阶段训练策略

    Figure 5.  Two-stage training strategy

    图 6  不同方法在仿真数据集上的散点图和线性回归结果

    Figure 6.  Scatter plot and linear regression results of different algorithms on simulation dataset

    图 7  不同方法在真实数据集上的散点图和线性回归结果

    Figure 7.  Scatter plot and linear regression results of different algorithms on authentic dataset

    表  1  在带有主观质量真值的仿真数据集上的评估结果

    Table  1.   Evaluation results on simulation dataset with subjective quality score

    SSROCCPPLCC
    颜色差异结构错位混合失真颜色差异结构错位混合失真
    两阶段训练策略0.81430.76350.86240.82360.82610.9038
    ImageNet0.76560.33260.76040.75240.35420.7643
    下载: 导出CSV

    表  2  在带有主观质量真值的真实数据集上的评估结果

    Table  2.   Evaluation results on authentic dataset with subjective quality score

    SSROCCPPLCC
    颜色差异结构错位混合失真颜色差异结构错位混合失真
    两阶段训练策略0.603 60.601 80.613 20.886 20.890 10.905 6
    ImageNet0.574 60.544 10.574 50.876 30.887 20.870 1
    下载: 导出CSV

    表  3  不同方法在仿真数据集上的性能对比

    Table  3.   Performance comparison of different algorithms on simulation dataset

    SSROCCPPLCC
    颜色差异结构错位混合失真颜色差异结构错位混合失真
    NIQE0.006 5−0.054 20.196 50.356 40.228 40.435 6
    BRISQUE0.024 50.170 50.203 90.223 10.275 90.304 3
    SSEQ0.034 10.695 60.745 80.214 20.805 40.844 3
    SPIQA0.674 20.375 90.680 10.687 20.386 50.725 6
    本文0.814 30.763 50.862 40.823 60.826 10.903 8
    下载: 导出CSV

    表  4  不同方法在真实数据集上的性能对比

    Table  4.   Performance comparison of different algorithms on authentic dataset

    SSROCCPPLCC
    颜色差异结构错位混合失真颜色差异结构错位混合失真
    NIQE−0.003 2 0.022 50.002 30.112 50.083 40.082 1
    BRISQUE0.323 10.336 90.325 00.796 40.785 60.798 5
    SSEQ0.348 90.354 20.324 10.774 50.764 40.778 9
    SPIQA0.435 60.375 90.436 40.846 90.822 10.852 3
    本文0.603 60.601 80.613 20.886 20.890 10.905 6
    下载: 导出CSV
  • [1] 周清华, 潘俊, 李德仁. 遥感图像镶嵌接缝线自动生成方法综述[J]. 国土资源遥感, 2013, 25(2): 1-7.

    ZHOU Q H, PAN J, LI D R. Overview of automatic generation of mosaicking seamlines for remote sensing images[J]. Remote Sensing for Land & Resources, 2013, 25(2): 1-7(in Chinese).
    [2] 秦曼君. 多光谱遥感图像去雾算法研究[D]. 北京: 北京航空航天大学, 2018: 7-13.

    QIN M J. Research on the fog removal algorithm of multispectral remote sensing image[D]. Beijing: Beihang University, 2018: 7-13(in Chinese).
    [3] 徐冬宇. 高光谱遥感图像质量评价算法研究[D]. 杭州: 浙江大学, 2019: 5-10.

    XU D Y. Research on quality evaluation algorithm of hyperspectral remote sensing image[D]. Hangzhou: Zhejiang University, 2019: 5-10(in Chinese).
    [4] 徐冬宇, 厉小润, 赵辽英, 等. 基于多模型融合的高光谱图像质量评价[J]. 激光与光电子学进展, 2019, 56(2): 92-101.

    XU D Y, LI X R, ZHAO L Y, et al. Hyperspectral image quality evaluation based on multi-model fusion[J]. Laser & Optoelectronics Progress, 2019, 56(2): 92-101(in Chinese).
    [5] YU S J, LI T S, XU X Y, et al. NRQQA: A no-reference quantitative quality assessment method for stitched images[C]//Proceedings of the ACM Multimedia Asia. New York: ACM, 2019: 1-6.
    [6] ZHU S D, ZHANG Y Z, TAO L, et al. A novel method for quality assessment of image stitching based on the Gabor filtering[C]//2018 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2019: 1605-1610.
    [7] LING S Y, CHEUNG G, LE CALLET P. No-reference quality assessment for stitched panoramic images using convolutional sparse coding and compound feature selection[C]//2018 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE Press, 2018: 1-6.
    [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [9] DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009: 248-255.
    [10] KANG L, YE P, LI Y, et al. Convolutional neural networks for no-reference image quality assessment[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 1733-1740.
    [11] BOSSE S, MANIRY D, MÜLLER K R, et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE Transactions on Image Processing, 2018, 27(1): 206-219.
    [12] ZHU H C, LI L D, WU J J, et al. MetaIQA: Deep meta-learning for no-reference image quality assessment[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 14131-14140.
    [13] HOU J W, LIN W S, ZHAO B Q. Content-dependency reduction with multi-task learning in blind stitched panoramic image quality assessment[C]//2020 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2020: 3463-3467.
    [14] LIN H H, HOSU V, SAUPE D. DeepFL-IQA: Weak supervision for deep IQA feature learning[EB/OL]. (2021-01-20)[2021-11-01]. https//arxiv.org/abs/2001.08113.
    [15] LIU X L, VAN DE WEIJER J, BAGDANOV A D. RankIQA: Learning from rankings for No-reference image quality assessment[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 1040-1049.
    [16] KIM J, ZHENG H, GHADIYARAM D, et al. Deep convolutional neural models for picture-quality prediction: Challenges and solutions to data-driven image quality assessment[J]. IEEE Signal Processing Magazine, 2017, 34(6): 130-141. doi: 10.1109/MSP.2017.2736018
    [17] GHADIYARAM D, BOVIK A C. Massive online crowdsourced study of subjective and objective picture quality[J]. IEEE Transactions on Image Processing, 2016, 25(1): 372-387.
    [18] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. doi: 10.1109/JPROC.2017.2675998
    [19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [20] KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. (2017-01-30)[2021-11-01]. https://arxiv.org/abs/1412.6980.
    [21] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. doi: 10.1109/LSP.2012.2227726
    [22] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. doi: 10.1109/TIP.2012.2214050
    [23] LIU L X, LIU B, HUANG H, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing:Image Communication, 2014, 29(8): 856-863. doi: 10.1016/j.image.2014.06.006
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  52
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 录用日期:  2022-03-11
  • 网络出版日期:  2022-04-25
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答