留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫碳表面对高超声速边界层稳定性影响

王蔚彰 赵瑞 桂裕腾 吴杰 涂国华

王蔚彰,赵瑞,桂裕腾,等. 泡沫碳表面对高超声速边界层稳定性影响[J]. 北京航空航天大学学报,2023,49(10):2741-2749 doi: 10.13700/j.bh.1001-5965.2021.0703
引用本文: 王蔚彰,赵瑞,桂裕腾,等. 泡沫碳表面对高超声速边界层稳定性影响[J]. 北京航空航天大学学报,2023,49(10):2741-2749 doi: 10.13700/j.bh.1001-5965.2021.0703
WANG W Z,ZHAO R,GUI Y T,et al. Stabilization effects of carbon foam surface on hypersonic boundary layers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2741-2749 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0703
Citation: WANG W Z,ZHAO R,GUI Y T,et al. Stabilization effects of carbon foam surface on hypersonic boundary layers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2741-2749 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0703

泡沫碳表面对高超声速边界层稳定性影响

doi: 10.13700/j.bh.1001-5965.2021.0703
详细信息
    通讯作者:

    E-mail:ghtu@skla.cardc.cn

  • 中图分类号: V211.3;O354.4

Stabilization effects of carbon foam surface on hypersonic boundary layers

More Information
  • 摘要:

    高超声速边界层转捩会使壁面摩阻和热流显著增加,严重影响飞行器的性能。微孔隙表面在不明显改变平均流场的同时,能够有效抑制边界层转捩,具有较大的应用潜力。在马赫数为6 的Ludwieg 管风洞中研究泡沫碳孔隙材料对尖锥边界层中不稳定波的影响规律,试验结果表明:尖锥边界层存在明显的第2模态波,其特征频率随着流向位置增加而减小。相比于光滑表面,泡沫碳表面使不同流向位置上的第2模态波增长率均有明显下降,至少延长第2模态传播区域21.6%。此外,采用阻抗管测量泡沫碳表面的声学特性获取阻抗模型系数,并结合线性稳定性理论预测了泡沫碳表面扰动模态增长率,理论结果与试验结果变化趋势相同。

     

  • 图 1  Ludwieg管风洞

    Figure 1.  Ludwieg wind tunnel

    图 2  Ludwieg管风洞的归一化压力波动

    Figure 2.  Normalized pressure fluctuations in Ludwieg wind tunnel

    图 3  尖锥模型及测点位置

    Figure 3.  Sharp cone model and measuring point location

    图 4  张贴泡沫碳材料后的尖锥模型

    Figure 4.  Sharp cone model pasted with foamed carbon material

    图 5  泡沫碳微观三维结构

    Figure 5.  Microstructure of carbon foam

    图 6  泡沫碳材料孔隙直径分布

    Figure 6.  Pore diameter distribution of foamed carbon material

    图 7  泡沫碳材料孔隙率分布

    Figure 7.  Porosity distribution of foamed carbon material

    图 8  不同尖锥表面沿流向的功率谱密度

    Figure 8.  Power spectral density along flow direction of different sharp cone surfaces

    图 9  第2模态波包传播情况

    Figure 9.  Propagation of the second model wave packet

    图 10  尖锥光滑与泡沫碳表面的增长率

    Figure 10.  Growth rate between sharp cone smooth surface and foamed carbon surface

    图 11  测试原理示意图

    Figure 11.  Schematic diagram of test principle

    图 12  阻抗管

    Figure 12.  Impedance tube

    图 13  泡沫碳材料吸声系数

    Figure 13.  Sound absorption coefficient of carbon foam materials

    图 14  LST与PCB测量数据

    Figure 14.  LST and PCB measurements

  • [1] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95. doi: 10.1146/annurev-fluid-122109-160750
    [2] 李锋, 解少飞, 毕志献, 等. 超高速飞行器中若干气动难题的实验研究[J]. 现代防御技术, 2014, 42 (5): 1-7.

    LI F, XIE S F, BI Z X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Moderm Defence Technology, 2014, 42 (5): 1-7(in Chinese).
    [3] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337.

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese).
    [4] SCHNEIDER S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences, 2004, 40(1-2): 1-50. doi: 10.1016/j.paerosci.2003.11.001
    [5] WEIHS H, LONGO J, TURNER J. The sharp edge flight experiment SHEFEX II, a mission overview and status[C]//Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
    [6] MACK L M. Boundary-layer linear stability theory. Special course on stability and transition of laminar flow advisory group for aerospace research and development: N84-33757 [R]. Washington, D. C. : NASA, 1984: 23-34.
    [7] MORKOVIN M V. Transition at hypersonic speeds: NASA-CR-178315[R]. Washington, D. C. : NASA, 1987.
    [8] KIMMEL R. Aspects of hypersonic boundary layer transition control[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
    [9] FEDOROV A V, MALMUTH N D, RASHEED A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4): 605-610. doi: 10.2514/2.1382
    [10] WARTEMANN V, LÜDEKE H, SANDHAM N. Stability analysis of hypersonic boundary layer flow over microporous surfaces[C]// Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
    [11] 涂国华, 陈坚强, 袁先旭, 等. 多孔表面抑制第二模态失稳的最优开孔率和孔半径分析[J]. 空气动力学学报, 2018, 36(2): 273-278.

    TU G H, CHEN J Q, YUAN X X, et al. Optimal porosity and pore radius of porous surfaces for damping the second-mode instability[J]. Acta Aerodynamica Sinica, 2018, 36(2): 273-278(in Chinese).
    [12] FEDOROV A, SHIPLYUK A, MASLOV A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479: 99-124. doi: 10.1017/S0022112002003440
    [13] TRITARELLI R C, LELE S K, FEDOROV A. Stabilization of a hypersonic boundary layer using a felt-metal porous coating[J]. Journal of Fluid Mechanics, 2015, 769: 729-739. doi: 10.1017/jfm.2015.156
    [14] TIAN X, ZHAO R, LONG T, et al. Reverse design of ultrasonic absorptive coating for the stabilization of mack modes[J]. AIAA Journal, 2019, 57(6): 2264-2269. doi: 10.2514/1.J058105
    [15] 赵瑞, 严昊, 席柯, 等. 声学超表面抑制第一模态研究[J]. 航空科学技术, 2020, 31(11): 104-112.

    ZHAO R, YAN H, XI K, et al. Research on acoustic metasurfaces for the suppression of the first mode[J]. Aeronautical Science & Technology, 2020, 31(11): 104-112(in Chinese).
    [16] 王蔚彰, 孔维萱, 严昊, 等. 声学超表面抑制高速边界层内宽频不稳定模态研究[J]. 北京航空航天大学学报, 2023, 49(2): 388-396.

    WANG W Z, KONG W X, YAN H, et al. Acoustic metasurfaces for stabilization of broadband unstable modes in high speed boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 388-396(in Chinese).
    [17] EGOROV I V, FEDOROV A V, SOUDAKOV V G. Receptivity of a hypersonic boundary layer over a flat plate with a porous coating[J]. Journal of Fluid Mechanics, 2008, 601: 165-187. doi: 10.1017/S0022112008000669
    [18] WANG X W, ZHONG X L. Numerical Simulations on mode S growth over feltmetal and regular porous coatings of a Mach 5.92 flow[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
    [19] WANG X W, ZHONG X L. The stabilization of a hypersonic boundary layer using local sections of porous coating[J]. Physics of Fluids, 2012, 24(3): 034105. doi: 10.1063/1.3694808
    [20] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8): 2942-2946. doi: 10.2514/1.J057272
    [21] ZHAO R, ZHANG X X, WEN C Y. Theoretical modeling of porous coatings with simple microstructures for hypersonic boundary-layer stabilization[J]. AIAA Journal, 2020, 58(2): 981-986. doi: 10.2514/1.J058403
    [22] ZHAO R, WEN C Y, LONG T H, et al. Spatial direct numerical simulation of the hypersonic boundary-layer stabilization using porous coatings[J]. AIAA Journal, 2019, 57(11): 5061-5065. doi: 10.2514/1.J058467
    [23] RASHEED A, HORNUNG H G, FEDOROV A V, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J]. AIAA Journal, 2002, 40: 481-489. doi: 10.2514/2.1671
    [24] CHOKANI N, BOUNTIN D A, SHIPLYUK A N, et al. Nonlinear aspects of hypersonic boundary-layer stability on a porous surface[J]. AIAA Journal, 2005, 43(1): 149-155. doi: 10.2514/1.9547
    [25] MASLOV A, SHIPLYUK A, SIDORENKO A, et al. Hypersonic laminar flow control using a porous coating of random microstructure[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [26] WAGNER A, KUHN M, SCHRAMM J M, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54(10): 1606. doi: 10.1007/s00348-013-1606-3
    [27] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location[J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(5): 873-878. doi: 10.1134/S002189441605014X
    [28] ZHU W K, SHI M T, ZHU Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1): 011701. doi: 10.1063/1.5139546
    [29] ZHU W K, CHEN X, ZHU Y D, et al. Nonlinear interactions in the hypersonic boundary layer on the permeable wall[J]. Physics of Fluids, 2020, 32(10): 104110. doi: 10.1063/5.0028698
    [30] 赵家权, 司马学昊, 黄冉冉, 等. 一种采用双弯管储气段布局的高超声速Ludwieg管设计[J]. 空气动力学学报, 2022, 40(4): 90-100.

    ZHAO J Q, SIMA X H, HUANG R R, et al. Design of a hypersonic Ludwieg tunnel with a double-bent storage tube[J]. Acta Aerodynamica Sinica, 2022, 40(4): 90-100(in Chinese).
    [31] LUDWIEG H. The tubular wind tunnel[J]. Journal of Flight Sciences, 1955, 3(7): 206-216.
    [32] MARINEAU E C, MORARU G C, LEWIS D R, et al. Mach 10 boundary layer transition experiments on sharp and blunted cones [C]//Proceedings of the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2014.
    [33] MACK L M. Linear stability theory and the problem of supersonic boundary- layer transition[J]. AIAA Journal, 1975, 13(3): 278-289. doi: 10.2514/3.49693
    [34] MALIK M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2): 376-413. doi: 10.1016/0021-9991(90)90106-B
    [35] 全国声学标准化技术委员会. 声学阻抗管中吸声系数和声阻抗的测量 第2部分: 传递函数法: GB/T 18696.2-2002[S]. 北京: 国家质量监督检验检疫总局, 2002.

    The National Technical Committee for Acoustics Standardization. Acoustics-measurement of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method: GB/T 18696.2-2002 [S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2002 (in Chinese).
    [36] WAGNER A. Passive hypersonic boundary layer transition control using ultrasonically absorptive carbon−carbon ceramic with random microstructure[D]. Belgium: Katholieke Universiteit Leuven, 2014.
  • 加载中
图(14)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  489
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答