留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热气防冰系统热载荷及引气流量制度分析

王柳 曾腾辉 任哲钒 章涛 黄平 卜雪琴

王柳,曾腾辉,任哲钒,等. 热气防冰系统热载荷及引气流量制度分析[J]. 北京航空航天大学学报,2023,49(10):2660-2668 doi: 10.13700/j.bh.1001-5965.2021.0710
引用本文: 王柳,曾腾辉,任哲钒,等. 热气防冰系统热载荷及引气流量制度分析[J]. 北京航空航天大学学报,2023,49(10):2660-2668 doi: 10.13700/j.bh.1001-5965.2021.0710
WANG L,ZENG T H,REN Z F,et al. Analysis of heat load and bleed air schedule for hot air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2660-2668 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0710
Citation: WANG L,ZENG T H,REN Z F,et al. Analysis of heat load and bleed air schedule for hot air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2660-2668 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0710

热气防冰系统热载荷及引气流量制度分析

doi: 10.13700/j.bh.1001-5965.2021.0710
详细信息
    通讯作者:

    E-mail:buxueqin@buaa.edu.cn

  • 中图分类号: V244.1+5

Analysis of heat load and bleed air schedule for hot air anti-icing system

More Information
  • 摘要:

    飞机机翼热气防冰系统设计主要包括防冰热载荷计算、笛形管设计、防冰腔设计和防冰系统验证。以某客机机翼为例,在机翼防冰热载荷计算的基础上,分析热载荷及溢流水蒸发率结果,获得防冰引气量需求,进一步提出防冰系统随高度变化的引气流量制度,确定防冰系统严酷状态设计点。采用欧拉-欧拉两相流方法计算水滴运动和表面水滴撞击特性,建立考虑溢流水流动相变的机翼表面的能量平衡方程,计算分析机翼表面的防冰热载荷和溢流水的蒸发率。分析结果表明:同一飞行与结冰气象条件下,在防冰表面温度2~15 ℃范围,热载荷随着表面温度近似以线性增加;为满足防冰要求,高度较低时的状态对应的表面温度设计值较大;引气流量制度随高度变化分为3个阶段:高度小于5594.9 m时,单边流量为0.91 kg/s;高度大于6705.0 m时,单边流量为0.59 kg/s;中间高度对应流量采取两者线性插值方式。研究结果为热气防冰系统的笛行管设计及校核提供支撑。

     

  • 图 1  防冰系统表面的热流示意图

    Figure 1.  Schematic of heat flux on anti-icing surface

    图 2  防冰表面控制容积的质量守恒

    Figure 2.  Mass conservation of control volume on anti-icing surface

    图 3  防冰表面控制容积的能量守恒

    Figure 3.  Energy conservation of control volume on anti-icing surface

    图 4  机翼几何模型

    Figure 4.  Geometric model of wing

    图 5  整体网格

    Figure 5.  Global mesh

    图 6  机翼表面网格

    Figure 6.  Mesh on wing surface

    图 7  状态点在结冰包线中的分布

    Figure 7.  Distribution of operating points in icing envelope

    图 8  溢流水结果云图

    Figure 8.  Contours of runback water

    图 9  防冰热载荷云图

    Figure 9.  Contours of anti-icing heatload

    图 10  表面温度为10 ℃时的热载荷随高度变化

    Figure 10.  Heatload changes with altitude (T = 10 ℃)

    图 11  热载荷与表面温度之间的关系(Case3)

    Figure 11.  Relationship between heatload and surface temperature (Case3)

    图 12  蒸发率与表面温度关系(Case3)

    Figure 12.  Relationship between evaporation rate and surface temperature (Case3)

    图 13  防冰热载荷和高度的关系

    Figure 13.  Relationship between anti-icing heatload and altitude

    图 14  引气流量和高度的关系

    Figure 14.  Relationship between bleed air flow flux and altitude

    表  1  飞行与结冰条件

    Table  1.   Flight and icing conditions

    编号高度/m温度/℃迎角/(°)速度/
    (m·s−1)
    LMVD/
    μm
    SLWC/
    (g·m−3)
    Case1450−4.704.80118.10200.54
    Case2550−3.604.90103.40200.56
    Case3950−4.904.70121.10200.53
    Case41250−4.504.80116.10200.54
    Case51550−5.204.70124.60200.53
    Case61850−4.804.80119.50200.53
    Case72150−3.306.3099.60200.56
    Case82250−4.104.80110.50200.55
    Case92450−3.806.20106.70200.55
    Case102450−5.204.70125.10200.53
    Case112850−4.304.80113.90200.54
    Case123150−5.004.80121.80200.53
    Case133250−3.508.00102.90200.56
    Case143450−4.604.80117.50200.54
    Case153750−5.304.70125.70200.52
    Case164050−3.207.8097.30200.57
    Case174450−5.604.40143.00240.42
    Case185250−10.458.00116.90200.42
    Case195450−11.767.80112.20200.39
    Case205550−12.427.90105.00200.38
    Case215950−15.048.30118.40200.32
    Case226050−15.707.80107.50200.30
    Case236705−20.009.00119.10200.21
    Case244850−14.200.80206.00200.34
    Case255595−12.711.10200.80220.37
    Case266050−15.900.70218.00200.30
    Case276705−20.000.70225.00200.21
    Case285400−13.400.80211.60210.34
     注:LMVD为平均水滴尺寸。
    下载: 导出CSV

    表  2  表面温度10℃时热载荷和蒸发率结果

    Table  2.   Results of thermal load and evaporation rate at surface temperature of 10 ℃

    编号高度/ft表面温度/℃热载荷/kW蒸发率/%
    Case14501066.678.5
    Case25501057.880.8
    Case39501066.076.8
    Case412501063.677.8
    Case515501067.175.6
    Case618501063.976.9
    Case721501051.188.5
    Case822501059.177.7
    Case924501054.986.0
    Case1024501066.274.6
    Case1128501059.976.7
    Case1231501064.175.4
    Case1332501048.297.5
    Case1434501061.675.6
    Case1537501065.473.7
    Case1640501044.997.5
    Case1744501060.969.5
    Case1852501064.197.9
    Case1954501064.099.0
    Case2055501060.899.5
    Case2159501067.499.6
    Case2260501064.199.6
    Case2367051067.199.8
    Case24485010106.287.7
    Case25559510113.480.4
    Case26605010106.891.0
    Case27670510100.199.7
    Case28540010106.984.7
    注:上表面后缘无溢流水流出。
    下载: 导出CSV

    表  3  不同表面温度时的热载荷和蒸发率结果(Case3)

    Table  3.   Results of heatload and evaporation rate at different surface temperatures (Case3)

    表面温度/℃热载荷/kW蒸发率/%备注
    227.263.1上表面有少量溢流水流出
    541.968.6上表面无溢流水流出
    856.273.2上表面无溢流水流出
    1066.076.8上表面无溢流水流出
    1275.980.8上表面无溢流水流出
    1380.983.0上表面无溢流水流出
    1591.287.8上表面无溢流水流出
    下载: 导出CSV

    表  4  满足防冰需求的表面温度设计值

    Table  4.   Design value of surface temperature to meet anti-icing requirements

    编号高度/m表面温度/℃热载荷/kW蒸发率/%
    Case14501276.982.8
    Case25501057.880.8
    Case39501275.980.8
    Case412501273.181.9
    Case515501381.781.4
    Case618501273.180.8
    Case721501051.188.5
    Case822501371.783.9
    Case924501054.986.0
    Case1024501379.980.2
    Case1128501372.282.7
    Case1231501376.880.9
    Case1332501048.297.5
    Case1434501373.781.2
    Case1537501482.281.1
    Case1640501044.997.5
    Case1744501688.082.4
    Case185250858.295.8
    Case195450858.597.2
    Case205550856.099.4
    Case215950862.499.4
    Case226050859.399.6
    Case236705862.699.8
    Case244850787.081.0
    Case25559510113.480.4
    Case266050787.883.6
    Case276705575.091.1
    Case285400894.080.5
    下载: 导出CSV
  • [1] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审组, 1985.

    QIU X G, HAN F H. Aircraft anti-icing system [M]. Beijing: Editing Group of Aviation Teaching Materials, 1985(in Chinese).
    [2] DU Y X, GUI Y W, XIAO C H, et al. Investigation on heat transfer characteristics of aircraft icing including runback water[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 3702-3707. doi: 10.1016/j.ijheatmasstransfer.2010.04.021
    [3] OLSEN W, SHAW R, NEWTON J. Ice shapes and the resulting drag increase for a NACA 0012 airfoil[C]//Proceedings of the 22nd Aerospace Sciences Meeting. Reston: AIAA, 1984.
    [4] CORTINAS J V Jr, BERNSTEIN B C, ROBBINS C C, et al. An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90[J]. Weather and Forecasting, 2004, 19(2): 377-390. doi: 10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2
    [5] JONES S, REVELEY M, EVANS J K, et al. Subsonic aircraft safety icing study: NASA/TM-2008-215107 [R]. Washington, D. C.: NASA, 2008
    [6] 郁嘉, 卜雪琴, 林贵平, 等. 非结冰气象条件下机翼热气防冰系统数值模拟[J]. 空气动力学学报, 2016, 34(5): 562-567.

    YU J, BU X Q, LIN G P, et al. Numerical simulation of a wing hot air anti-icing system in dry air conditions[J]. Acta Aerodynamica Sinica, 2016, 34(5): 562-567(in Chinese).
    [7] PAPADAKIS M, WONG S H, YEONG H W, et al. Icing tests of a wing model with a hot-air ice protection system[C]//Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010.
    [8] 卜雪琴, 郁嘉, 林贵平, 等. 机翼热气防冰系统设计[J]. 北京航空航天大学学报, 2010, 36(8): 927-930.

    BU X Q, YU J, LIN G P, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930(in Chinese).
    [9] ROSERO J A, ORTEGA J A, ALDABAS E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3): 3-9. doi: 10.1109/MAES.2007.340500
    [10] DOMINGOS R, PAPADAKIS M, ZAMORA A. Computational methodology for bleed air ice protection system parametric analysis[C]//Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010.
    [11] 倪章松, 刘森云, 张军, 等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报, 2021, 36(1): 8-14.

    NI Z S, LIU S Y, ZHANG J, et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power, 2021, 36(1): 8-14(in Chinese).
    [12] 管宁. 三维机翼防冰热载荷的数值模拟[D]. 南京: 南京航空航天大学, 2007.

    GUAN N. Numerical simulation of anti-icing thermal loads on a 3D airfoil[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
    [13] 卜雪琴, 郁嘉, 林贵平. 一种热气防冰系统的数值仿真[J]. 计算机仿真, 2010, 27(9): 40-43.

    BU X Q, YU J, LIN G P. Numerical simulation of an airfoil hot-air anti-icing system[J]. Computer Simulation, 2010, 27(9): 40-43(in Chinese).
    [14] 赵勇, 杨新亮. 飞机水平尾翼水滴撞击特性及防冰热载荷计算[J]. 航空动力学报, 2012, 27(11): 2401-2407.

    ZHAO Y, YANG X L. Impingement characteristics and anti-icing heat load calculation of certain tailplane[J]. Journal of Aerospace Power, 2012, 27(11): 2401-2407(in Chinese).
    [15] 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.

    LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016 (in Chinese).
    [16] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. doi: 10.2514/8.2520
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 录用日期:  2022-03-27
  • 网络出版日期:  2022-04-08
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答