留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进长短时记忆网络的地面空调能耗预测

周璇 林家泉

周璇,林家泉. 基于改进长短时记忆网络的地面空调能耗预测[J]. 北京航空航天大学学报,2023,49(10):2750-2760 doi: 10.13700/j.bh.1001-5965.2021.0715
引用本文: 周璇,林家泉. 基于改进长短时记忆网络的地面空调能耗预测[J]. 北京航空航天大学学报,2023,49(10):2750-2760 doi: 10.13700/j.bh.1001-5965.2021.0715
ZHOU X,LIN J Q. Prediction of ground air conditioner energy consumption based on improved long short-term memory neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2750-2760 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0715
Citation: ZHOU X,LIN J Q. Prediction of ground air conditioner energy consumption based on improved long short-term memory neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2750-2760 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0715

基于改进长短时记忆网络的地面空调能耗预测

doi: 10.13700/j.bh.1001-5965.2021.0715
基金项目: 工业和信息化部民机专项(2020020306)
详细信息
    通讯作者:

    E-mail:jqlin@cauc.edu.cn

  • 中图分类号: V351.3

Prediction of ground air conditioner energy consumption based on improved long short-term memory neural network

Funds: Special Program for Civil Airplane of the Ministry of Industry and Information Technology (2020020306)
More Information
  • 摘要:

    在机场运行管理中,地面空调是对飞机客舱进行降温除湿的主要设备,准确预测出其在工作过程中的耗电量对于建设绿色机场具有重要意义。地面空调能耗受多维因素的影响,为提高预测精度,提出一种基于改进双向长短时记忆(BiLSTM)神经网络的飞机地面空调能耗预测方法。所提方法使用BiLSTM神经网络和注意力机制构造模型的预测部分,可以充分挖掘和利用数据中的时间序列特征;并以预测精度最优为指标,提出一种基于改进蚁狮优化(IALO)算法的超参数优化算法,与标准蚁狮优化算法相比,改进蚁狮优化算法在随机游走空间缩小机制中改进了收缩因子并赋予收缩系数一定的随机性,同时引入普通蚁狮权重系数动态调整机制,提高所提算法的收敛速度及寻优能力。在实际数据集上进行仿真可知,所提方法预测结果的均方误差为6.045,平均绝对百分比误差为0.928%,决定系数为0.956。通过与其他多种预测方法比较,充分证明所提方法具有准确度高、适应性强等优点。

     

  • 图 1  LSTM基本单元结构

    Figure 1.  Structure of LSTM basic unit

    图 2  BiLSTM结构

    Figure 2.  Structure of BiLSTM

    图 3  注意力机制结构[9]

    Figure 3.  Structure of attention mechanism[9]

    图 4  预测部分结构

    Figure 4.  Structure of prediction section

    图 5  收缩因子调节过程

    Figure 5.  Adjustment process of contraction factor

    图 6  普通蚁狮权重系数调节过程

    Figure 6.  Adjustment process of ordinary ant lion weight coefficient

    图 7  IALO-AM-BiLSTM模型结构

    Figure 7.  Structure of IALO-AM-BiLSTM

    图 8  IALO-AM-BiLSTM模型的训练流程

    Figure 8.  Flow chart of training flow of IALO-AM-BiLSTM

    图 9  各算法迭代过程

    Figure 9.  Iterative process of each algorithms

    图 10  不同模型预测结果与真实值对比

    Figure 10.  Comparison of predicted and real values based on different models

    表  1  部分样本数据

    Table  1.   Partial sample data

    初始温度/℃初始湿度/%最终温度/℃最终湿度/%耗电量/kW
    32.557.524.737.9181.33
    31.363.923.836.2165.24
    32.649.925.024.7178.26
    35.268.225.236.0186.14
    33.272.824.537.0169.94
    31.262.827.635.1147.79
    下载: 导出CSV

    表  2  超参数搜索空间

    Table  2.   Search space of hyperparameters

    超参数搜索空间
    批尺寸1~20
    学习率0.0001~0.01
    迭代次数300~500
    BiLSTM层的单元个数10~200
    Dense层的单元个数10~200
    Dropout层的抛弃率0.1~0.9
    下载: 导出CSV

    表  3  各算法的最优超参数组合

    Table  3.   Optimal hyperparameter combination of different algorithms

    算法批尺寸BiLSTM层的
    单元个数
    Dense层的
    单元个数
    迭代次数Dropout层的
    抛弃率
    学习率
    PSO1200964990.10.01
    ALO865674870.20.0077
    IALO2361213240.20.0064
    下载: 导出CSV

    表  4  不同模型预测结果对比(测试集)

    Table  4.   Comparison of prediction results based on different models (test set)

    模型MSEMAPE/%R2
    BP37.1592.8420.728
    LSTM17.2571.8700.874
    BiLSTM14.3261.5040.895
    AM-BiLSTM11.1451.0830.918
    PSO-AM-BiLSTM9.1961.0680.927
    ALO-AM-BiLSTM9.4111.0410.931
    IALO-AM-BiLSTM6.0450.9280.956
    下载: 导出CSV
  • [1] 王修岩, 刘艳敏, 张革文, 等. 基于PSO和CRO联合算法的飞机客舱能耗预测[J]. 系统仿真学报, 2018, 30(8): 3074-3081.

    WANG X Y, LIU Y M, ZHANG G W, et al. Prediction of aircraft cabin energy consumption based on PSO and CRO algorithms[J]. Journal of System Simulation, 2018, 30(8): 3074-3081(in Chinese).
    [2] 林家泉, 孙凤山, 李亚冲, 等. 基于IPSO-Elman神经网络的飞机客舱能耗预测[J]. 航空学报, 2020, 41(7): 323614.

    LIN J Q, SUN F S, LI Y C, et al. Prediction of aircraft cabin energy consumption based on IPSO-Elman neural network[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323614(in Chinese).
    [3] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471. doi: 10.1162/089976600300015015
    [4] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [5] 史亚菲, 李峭, 熊华钢. 基于LSTM的TTE网络速率约束流量预测[J]. 北京航空航天大学学报, 2020, 46(4): 822-829.

    SHI Y F, LI Q, XIONG H G. Rate-constrained traffic prediction of TTE network based on LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 822-829(in Chinese).
    [6] CUI C, HE M, DI F C, et al. Research on power load forecasting method based on LSTM model[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE Press, 2020: 1657-1660.
    [7] SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]//2019 IEEE International Conference on Big Data. Piscataway: IEEE Press, 2020: 3285-3292.
    [8] ZHANG L, LIU P, ZHAO L, et al. Air quality predictions with a semi-supervised bidirectional LSTM neural network[J]. Atmospheric Pollution Research, 2021, 12(1): 328-339. doi: 10.1016/j.apr.2020.09.003
    [9] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.

    ZHAO B, WANG Z P, JI W J, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370-4376(in Chinese).
    [10] JING H, HAN L, GAO Z. Wind power ramp forecast based on feature extraction using convolutional neural network[J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45(4): 98-105.
    [11] ZHANG W, ZHU F, CHEN Y, et al. Bus passenger flow forecast based on attention and time-sharing graph convolutional network[J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34(2): 167-175.
    [12] TAN R K, BORA Ş. Parameter tuning in modeling and simulations by using swarm intelligence optimization algorithms[C]//2017 9th International Conference on Computational Intelligence and Communication Networks. Piscataway: IEEE Press, 2018: 148-152.
    [13] PHAN H D, ELLIS K, BARCA J C, et al. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms[J]. Neural Computing and Applications, 2020, 32(2): 567-588. doi: 10.1007/s00521-019-04229-2
    [14] 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978.

    LONG Y, DENG X L, YANG X X, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978(in Chinese).
    [15] YUAN X H, CHEN C, LEI X H, et al. Monthly runoff forecasting based on LSTM-ALO model[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32(8): 2199-2212. doi: 10.1007/s00477-018-1560-y
    [16] CHENG H Y, DING X W, ZHOU W N, et al. A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange[J]. International Journal of Electrical Power & Energy Systems, 2019, 110: 653-666.
    [17] YE Z W, TANG Y Z, LIU W, et al. Learning parameters in deep belief networks through ant lion optimization algorithm[C]//2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. Piscataway: IEEE Press, 2019: 548-551.
    [18] MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80-98. doi: 10.1016/j.advengsoft.2015.01.010
    [19] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958.
    [20] LIM H I. A study on dropout techniques to reduce overfitting in deep neural networks[C]//Advanced Multimedia and Ubiquitous Engineering. Berlin: Springer, 2021: 133-139.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  49
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-03-11
  • 网络出版日期:  2022-03-18
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答