留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于系统辨识的自适应变形机翼控制系统设计

谢长川 朱立鹏 孟杨 冒森

谢长川,朱立鹏,孟杨,等. 基于系统辨识的自适应变形机翼控制系统设计[J]. 北京航空航天大学学报,2023,49(10):2761-2770 doi: 10.13700/j.bh.1001-5965.2021.0717
引用本文: 谢长川,朱立鹏,孟杨,等. 基于系统辨识的自适应变形机翼控制系统设计[J]. 北京航空航天大学学报,2023,49(10):2761-2770 doi: 10.13700/j.bh.1001-5965.2021.0717
XIE C C,ZHU L P,MENG Y,et al. Design of adaptive deformation wing control system based on system identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2761-2770 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0717
Citation: XIE C C,ZHU L P,MENG Y,et al. Design of adaptive deformation wing control system based on system identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2761-2770 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0717

基于系统辨识的自适应变形机翼控制系统设计

doi: 10.13700/j.bh.1001-5965.2021.0717
详细信息
    通讯作者:

    E-mail:summy@buaa.edu.cn

  • 中图分类号: V215.3

Design of adaptive deformation wing control system based on system identification

More Information
  • 摘要:

    针对固定翼飞行器无法在复杂多变飞行环境中始终处于最优气动构型的缺陷,提出能够根据飞行环境参数自适应变形的机翼设计理念。设计了一款通过刚性翼盒偏转实现变形功能的机翼,通过面元法耦合XFOIL黏性修正器进行气动模型仿真计算,对该机翼的气动特性进行分析;并在此基础上设计变形机翼舵机风洞试验平台,搭建测试采集系统,对航模舵机驱动变形的气动伺服系统进行低速风洞试验,通过子空间辨识法获得了气动伺服系统的数学模型,并通过比例积分微分(PID)控制结合Smith预估控制算法的方式进行舵机补偿控制。最后根据得到的变形机翼气动数据和舵机频响特性,以优化气动性能为目标设计了一款基于舵机补偿的自适应变形机翼反馈控制系统,可以实现在复杂环境中的舵机补偿和自适应变形,对后续变形机翼的设计提供了参考。

     

  • 图 1  刚性分段后缘变弯度结构设计图

    Figure 1.  Design drawing of variable bending structure for rigid segmental trailing edge

    图 2  刚性分段后缘变弯度结构实物图

    Figure 2.  Picture of variable bending structure for rigid segmental trailing edge

    图 3  风洞试验支持系统

    Figure 3.  Wind tunnel support system

    图 4  风洞试验数据采集系统示意图

    Figure 4.  Design drawing of wind tunnel data acquisition system

    图 5  风洞试验数据采集系统实物图

    Figure 5.  Picture of wind tunnel data acquisition system

    图 6  变形机翼翼剖面

    Figure 6.  Deformer wing section

    图 7  各构型升力系数随迎角变化曲线

    Figure 7.  Variation of lift coefficients of each configuration with angle of attack

    图 8  各构型极曲线

    Figure 8.  Pole curve of each configuration

    图 9  各构型升阻比随迎角变化曲线

    Figure 9.  Variation of lift-drag ratio of each configuration with angle of attack

    图 10  舵机动态响应曲线

    Figure 10.  Dynamic response of steering gear

    图 11  舵机在各工况下的频响特性

    Figure 11.  Frequency response characteristics of steering gear

    图 12  舵机频响特性拟合与试验数据对比

    Figure 12.  Fitting and experimental data of frequency response characteristics

    图 13  Smith预估控制算法流程

    Figure 13.  Flow of Smith predictive control algorithm

    图 14  舵机补偿系统

    Figure 14.  Steering gear compensation system

    图 15  不同控制方式下舵机阶跃响应

    Figure 15.  Step response of steering gear under different control modes

    图 16  飞行参数反馈控制系统

    Figure 16.  Feedback control system of flight parameter

    图 17  自适应变形过程时域响应

    Figure 17.  Adaptive time domain response of deformation

  • [1] 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007, 50(8): 38-41.

    CUI E J, BAI P, YANG J M. Development path of intelligent morphing aircraft[J]. Aeronautical Manufacturing Technology, 2007, 50(8): 38-41(in Chinese).
    [2] 张音旋, 陈亮, 吴江鹏, 等. 可变弯度机翼后缘的研究进展及其关键技术[J]. 飞机设计, 2017, 37(6): 34-39.

    ZHANG Y X, CHEN L, WU J P, et al. Development and key technologies of the variable camber trailing edge[J]. Aircraft Design, 2017, 37(6): 34-39(in Chinese).
    [3] MAO S, XIE C C, YANG L, et al. Static aeroelastic characteristics of morphing trailing-edge wing using geometrically exact vortex lattice method[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-15.
    [4] 李军府, 艾俊强, 董海锋. 飞机变形技术发展探究[J]. 航空科学技术, 2009, 20(2): 3-6.

    LI J F, AI J Q, DONG H F. Research on the development of aircraft morphing technologies[J]. Aeronautical Science and Technology, 2009, 20(2): 3-6(in Chinese).
    [5] WOODS B K, BILGEN O, FRISWELL M I. Wind tunnel testing of the fish bone active camber morphing concept[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7): 772-785. doi: 10.1177/1045389X14521700
    [6] RAGHAVAN B, PATIL M J. Flight control for flexible, high-aspect-ratio flying wings[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 64-74. doi: 10.2514/1.45471
    [7] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [8] JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[J]. Proceedings of SPIE—The International Society for Optical Engineering, 2004, 5388: 213-224.
    [9] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1): 29-45.

    LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45(in Chinese).
    [10] 孙玉凯, 张仁嘉, 吴志刚, 等. 航模舵机的动态特性测试与系统辨识[J]. 北京航空航天大学学报, 2020, 46(2): 294-303.

    SUN Y K, ZHANG R J, WU Z G, et al. Dynamic property test and system identification of model aircraft actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 294-303(in Chinese).
    [11] CONCILIO A, DIMINO I, PECORA R, et al. Structural design of an adaptive wing trailing edge for enhanced cruise performance[C]// Proceedings of the 24th AIAA/AHS Adaptive Structures Conference. Reston: AIAA, 2016: 1317.
    [12] 冒森, 杨超, 谢长川, 等. 刚性变弯度机翼设计及低速风洞试验研究[J]. 振动与冲击, 2021, 40(21): 157-167.

    MAO S, YANG C, XIE C C, et al. Design and low speed wind tunnel tests of a rigid variable camber wing[J]. Journal of Vibration and Shock, 2021, 40(21): 157-167(in Chinese).
    [13] WHITFIELD D L, SWAFFORD T W, JACOCKS J L. Calculation of turbulent boundary layers with separation and viscous-inviscid interaction[J]. AIAA Journal, 1981, 19(10): 1315-1322. doi: 10.2514/3.60066
    [14] 赵志俊, 孟祥喆, 郑浩. 舵机带宽测试系统设计与试验方法研究[J]. 电子测量技术, 2019, 42(1): 63-67.

    ZHAO Z J, MENG X Z, ZHENG H. Research on design and test method of actuator bandwidth testing system[J]. Electronic Measurement Technology, 2019, 42(1): 63-67(in Chinese).
    [15] 张少应, 陈明哲. 数字化舵机频率特性测试方法与实现[J]. 测控技术, 2017, 36(7): 30-32. doi: 10.3969/j.issn.1000-8829.2017.07.008

    ZHANG S Y, CHEN M Z. Method and implementation of frequency characteristic test for digital servo[J]. Measurement & Control Technology, 2017, 36(7): 30-32(in Chinese). doi: 10.3969/j.issn.1000-8829.2017.07.008
    [16] 章家保, 刘慧, 贾宏光, 等. 电动舵机伺服系统的模型辨识及其校正[J]. 光学 精密工程, 2008, 16(10): 1971-1976.

    ZHANG J B, LIU H, JIA H G, et al. Model identification and corrector design for servo system of electromechanical actuator[J]. Optics and Precision Engineering, 2008, 16(10): 1971-1976(in Chinese).
    [17] 梁春燕, 谢剑英. 大纯滞后系统的自适应补偿控制[J]. 控制理论与应用, 2001, 18(2): 176-180.

    LIANG C Y, XIE J Y. The adaptive control with compensation for long time delay system[J]. Control Theory & Applications, 2001, 18(2): 176-180(in Chinese).
    [18] 黄伟, 李芹, 王志萍. 增益和相位补偿的双模Smith预估控制算法[J]. 上海电力学院学报, 2011, 27(6): 603-607.

    HUANG W, LI Q, WANG Z P. Research on dual-model Smith predictive control with gain and phrase compensation[J]. Journal of Shanghai University of Electric Power, 2011, 27(6): 603-607(in Chinese).
    [19] MEHTA U, KAYA I. Smith predictor with sliding mode control for processes with large dead times[J]. Journal of Electrical Engineering, 2017, 68(6): 463-469. doi: 10.1515/jee-2017-0081
    [20] SAKR A, EL-NAGAR A M, EL-BARDINI M, et al. Improving the performance of networked control systems with time delay and data dropouts based on fuzzy model predictive control[J]. Journal of the Franklin Institute, 2018, 355(15): 7201-7225. doi: 10.1016/j.jfranklin.2018.07.012
  • 加载中
图(17)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  18
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-05-25
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答