留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蜂窝结构的扩展六边形搜索方法

韩继凯 袁涛 刘泽坤 郝希阳 张式建

韩继凯,袁涛,刘泽坤,等. 基于蜂窝结构的扩展六边形搜索方法[J]. 北京航空航天大学学报,2023,49(10):2731-2740 doi: 10.13700/j.bh.1001-5965.2021.0718
引用本文: 韩继凯,袁涛,刘泽坤,等. 基于蜂窝结构的扩展六边形搜索方法[J]. 北京航空航天大学学报,2023,49(10):2731-2740 doi: 10.13700/j.bh.1001-5965.2021.0718
HAN J K,YUAN T,LIU Z K,et al. Expanding hexagon search method based on honeycomb structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2731-2740 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0718
Citation: HAN J K,YUAN T,LIU Z K,et al. Expanding hexagon search method based on honeycomb structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2731-2740 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0718

基于蜂窝结构的扩展六边形搜索方法

doi: 10.13700/j.bh.1001-5965.2021.0718
详细信息
    通讯作者:

    E-mail:hanjikai_hjhkdx@163.com

  • 中图分类号: U676;O229

Expanding hexagon search method based on honeycomb structure

More Information
  • 摘要:

    海上搜索、航空反潜等海上活动经常需要对目标海域进行全面搜索,在研究扩展方形搜索方法的缺点后,提出采用基于蜂窝结构的扩展六边形搜索方法。从理论上分析2种方法的搜索效率、探测次数、所需航程和重复搜索面积等内容;证明了当目标搜索区域半径大于某值时,所提方法明显优于扩展方形搜索方法,并给出了该值的计算方法。通过仿真验证了理论分析的正确性,为海上搜索任务提供了更为高效的搜寻方法,同时为无人化自动搜索提供理论基础和参考依据。

     

  • 图 1  扩展方形搜索方法

    Figure 1.  Extended square search method

    图 2  蜂窝拓扑结构示意图

    Figure 2.  Schematic diagram of cellular topology structure

    图 3  二维平面扩展六边形覆盖规律

    Figure 3.  Two-dimensional planar extended hexagonal covering laws

    图 4  最大搜索半径与探测次数

    Figure 4.  Maximum search radius versus number of detections

    图 5  不同$ k $值对应$ m $的取值

    Figure 5.  Different values of k correspond to values of m

    图 6  探测航程

    Figure 6.  Comparison of detection ranges

    图 7  转弯次数

    Figure 7.  Comparison of number of turns

    图 8  $ a $的取值范围

    Figure 8.  Range of values of a

    图 9  ${\varDelta }_{\Delta t}$的取值范围

    Figure 9.  Range of values of $ {\varDelta }_{\Delta t} $

    图 10  ${t}_{m}、{t}_{s}、{t}_{{\textit{z}}}$对$ \Delta t $影响

    Figure 10.  Effect of ${t}_{m}、{t}_{s}、{t}_{{\textit{z}}}$ on $ \Delta t $

    图 11  2种搜索方法动态目标仿真

    Figure 11.  Dynamic target simulation for both methods

    图 12  2种方法静态目标仿真

    Figure 12.  Static target simulation diagram for both methods

    表  1  本文方法主要参数规律

    Table  1.   Main parameters of proposed method

    层数l探测次数m航程s转弯次数z
    11$ {s}_{0} $0
    27$ {s}_{0}+6\sqrt{3}r $5
    319$ {s}_{0}+18\sqrt{3}r $11
    $\vdots$$\vdots$$\vdots$$\vdots$
    $ {n}_{6} $$ 3{{n}_{6}}^{2}-3{n}_{6}+1 $$ {s}_{0}+3\sqrt{3}({{n}_{6}}^{2}-{n}_{6})r $$ 6\left({n}_{6}-1\right)-1 $
    下载: 导出CSV

    表  2  扩展方形搜索方法主要参数规律

    Table  2.   Extended square search method main parameter law

    层数l探测次数m航程s转弯次数z
    11$ {s}_{0} $0
    24$ {s}_{0}+3\sqrt{2}r $2
    39$ {s}_{0}+8\sqrt{2}r $4
    $\vdots$$\vdots$$\vdots$$\vdots$
    $ {n}_{4} $$ {{n}_{4}}^{2} $$ {s}_{0}+\sqrt{2}({{n}_{4}}^{2}-1)r $$ 2\left({n}_{4}-1\right) $
    下载: 导出CSV

    表  3  动态目标搜索效能对比

    Table  3.   Dynamic target search performance comparison

    方法平均探测次数/次平均探测时间/h平均航程/km
    本文方法14.742.7788.15
    扩展方形搜索方法18.703.4492.70
    下载: 导出CSV

    表  4  静态目标搜索效能对比

    Table  4.   Static target search performance comparison

    方法平均探测次数/次平均搜索时间/h平均航程/km
    本文方法 9.736.1442.02
    扩展方形搜索方法11.536.9941.36
    下载: 导出CSV
  • [1] 吴芳, 吴铭, 杨日杰. 反潜机吊放声纳扩展螺旋线形搜潜建模[J]. 北京航空航天大学学报, 2011, 37(9): 1137-1141.

    WU F, WU M, YANG R J. Building extended spirality searching model of dipping sonar of anti-submarine airplane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1137-1141(in Chinese).
    [2] SMITH T J. Two evaluative models for a family of submarine versus submarine expanding square search plans[D]. Monterey: Naval Postgraduate School Monterey CA, 1973.
    [3] 张发强, 孙建华. 舰载直升机在护航编队中对海盗目标预警的使用研究[J]. 舰船电子工程, 2010, 30(11): 7-9.

    ZHANG F Q, SUN J H. Research on the service that the ship-board aircraft searching the viking targets in the escort formation[J]. Ship Electronic Engineering, 2010, 30(11): 7-9(in Chinese).
    [4] 艾兵, 杨睿. 直升机海上搜索航路辅助规划算法[J]. 电光与控制, 2017, 24(11): 91-94.

    AI B, YANG R. An algorithm of auxiliary route planning for helicopter marine search[J]. Electronics Optics & Control, 2017, 24(11): 91-94(in Chinese).
    [5] 中国海上搜救中心. 国家海上搜救手册[M]. 大连: 大连海事大学出版社, 2011.

    CHINA MRCC, National maritime SAR manual of China [M]. Dalian: Dalian Maritime University Press, 2011 (in Chinese).
    [6] IMO/ICAO. International aeronautical and maritime search and rescue manual—Volume III mobile facilities: Doc 9731-3 [S]. London/Montreal : IMO/ICAO, 2003.
    [7] KASYK L, PLESKACZ K, BUGAJSKI G. An analysis of discrepancies in search areas in a diagram of an expanding square search[J]. Zeszyty Naukowe Akademii Morskiej w Szczecinie, 2016, 45(117): 94-98.
    [8] LIANG X D, LI L Y, WU J G, et al. Mobile robot path planning based on adaptive bacterial foraging algorithm[J]. Journal of Central South University, 2013, 20(12): 3391-3400. doi: 10.1007/s11771-013-1864-5
    [9] SILJANDER M, VENÄLÄINEN E, GOERLANDT F, et al. GIS-based cost distance modelling to support strategic maritime search and rescue planning: A feasibility study[J]. Applied Geography, 2015, 57: 54-70. doi: 10.1016/j.apgeog.2014.12.013
    [10] YANG T T, JIANG Z, SUN R J, et al. Maritime search and rescue based on group mobile computing for unmanned aerial vehicles and unmanned surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7700-7708. doi: 10.1109/TII.2020.2974047
    [11] MATOS A, MARTINS A, DIAS A, et al. Multiple robot operations for maritime search and rescue in euRathlon 2015 competition[C]// OCEANS 2016 - Shanghai. Piscataway: IEEE Press, 2016: 1-7.
    [12] AGBISSOH OTOTE D, LI B S, AI B, et al. A decision-making algorithm for maritime search and rescue plan[J]. Sustainability, 2019, 11(7): 2084. doi: 10.3390/su11072084
    [13] AKBARI A, PELOT R, EISELT H A. A modular capacitated multi-objective model for locating maritime search and rescue vessels[J]. Annals of Operations Research, 2018, 267(1-2): 3-28. doi: 10.1007/s10479-017-2593-1
    [14] 孙明太, 王涛, 赵绪明. 反潜直升机吊声搜潜效能的建模仿真[J]. 火力与指挥控制, 2005, 30(3): 33-36.

    SUN M T, WANG T, ZHAO X M. Modeling and simulation the efficiency of the dipping sonar on the antisubmarine helicopter[J]. Fire Control & Command Control, 2005, 30(3): 33-36(in Chinese).
    [15] 邱平. 海上最佳搜寻区域与搜寻方法的研究[D]. 大连: 大连海事大学, 2006.

    QIU P. A numerical study on the optimal search area and search patterns over sea[D]. Dalian: Dalian Maritime University, 2006 (in Chinese).
    [16] AKBARI A, EISELT H A, PELOT R. A maritime search and rescue location analysis considering multiple criteria, with simulated demand[J]. INFOR:Information Systems and Operational Research, 2018, 56(1): 92-114. doi: 10.1080/03155986.2017.1334322
    [17] KERSHNER R. The number of circles covering a set[J]. American Journal of Mathematics, 1939, 61(3): 665. doi: 10.2307/2371320
    [18] ONGGO B S, KARATAS M. Test-driven simulation modelling: A case study using agent-based maritime search-operation simulation[J]. European Journal of Operational Research, 2016, 254(2): 517-531. doi: 10.1016/j.ejor.2016.03.050
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-03-05
  • 网络出版日期:  2022-04-25
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答