留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于桥接分布的无人机集群作战意图推断

薛锡瑞 黄树彩 韦道知

薛锡瑞,黄树彩,韦道知. 基于桥接分布的无人机集群作战意图推断[J]. 北京航空航天大学学报,2023,49(10):2679-2688 doi: 10.13700/j.bh.1001-5965.2021.0719
引用本文: 薛锡瑞,黄树彩,韦道知. 基于桥接分布的无人机集群作战意图推断[J]. 北京航空航天大学学报,2023,49(10):2679-2688 doi: 10.13700/j.bh.1001-5965.2021.0719
XUE X R,HUANG S C,WEI D Z. Operational intention inference of UAV cluster based on bridging distributions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2679-2688 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0719
Citation: XUE X R,HUANG S C,WEI D Z. Operational intention inference of UAV cluster based on bridging distributions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2679-2688 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0719

基于桥接分布的无人机集群作战意图推断

doi: 10.13700/j.bh.1001-5965.2021.0719
详细信息
    通讯作者:

    E-mail:rayngu@126.com

  • 中图分类号: TN911.7

Operational intention inference of UAV cluster based on bridging distributions

More Information
  • 摘要:

    针对无人机集群攻击意图难以有效推断问题,提出基于集群协同规则和具有明确速度定义的综合奥恩斯坦-乌伦贝克(IOU)运动过程推导的马尔可夫桥接分布的无人机集群运动模型,并在此基础上提出基于可达域优化的贝叶斯意图推断方法。利用随机微分方程将所提模型与马尔科夫桥接模型相结合,并推导其在离散空间的表达形式。在基本贝叶斯推断方法的基础上,考虑了所提模型中目的地状态对集群状态的限制作用,通过计算集群可达域,修正量测似然,推导了利用可达域优化贝叶斯推断结果的方法。仿真实验表明:所提模型能够准确模拟集群运动过程并有效推断集群作战意图。

     

  • 图 1  可达域优化思想

    Figure 1.  Idea of reachable domain optimization

    图 2  可达域变化过程

    Figure 2.  Process of reachable domain change

    图 3  可达域优化推断流程

    Figure 3.  Using reachable domain to optimize inference result flow

    图 4  可达域计算方法

    Figure 4.  Calculation method of reachable domain

    图 5  集群运动过程

    Figure 5.  Cluster movement process

    图 6  集群速度收敛过程

    Figure 6.  Convergence process of cluster speed

    图 7  目的地推断结果

    Figure 7.  Destination inference results

    图 8  目的地推断概率

    Figure 8.  Destination inference probability

    图 9  推断概率提升均值

    Figure 9.  Inference probability average improvement

    图 10  抵达时刻推断结果

    Figure 10.  Arrival time inference result

    图 11  一组样本仿真结果

    Figure 11.  One set of sample simulation results

    图 12  可达域优化效果

    Figure 12.  Reachable domain optimization effect

    表  1  参数定义

    Table  1.   Parameter definition

    ${d_{\rm{r}}}$ ${d_{\rm{m}} } $$\left[ \begin{gathered} {R_{11}},{R_{12}} \\ {R_{21}},{R_{22}} \\ \end{gathered} \right]$ $\left[ {{\sigma _x},{\sigma _y}} \right]$
    1530 $\left[ \begin{gathered} 4,3 \\ 4,1 \\ \end{gathered} \right]$ $\left[ {3,3} \right]$
    下载: 导出CSV

    表  2  目的地位置

    Table  2.   Location of destination

    目的地位置坐标/m 目的地位置坐标/m
    D1(1 400,2 040) D4(2 880,2 940)
    D2(1 960,2 500)D5(3 440,2 680)
    D3(2 560,3 360)
    下载: 导出CSV
  • [1] BORDEAUX J. Self-organized air tasking: Examining a non-hierarchical model for joint air operations[EB/OL]. (2012-10-03)[2021-09-22]. http://www.dodccrp.org/events/9th_ICCRTS/CD/papers/114.pdf.
    [2] 党爱国, 王坤, 王延密, 等. 无人机集群作战概念发展对未来战场攻防影响[J]. 战术导弹技术, 2019(1): 37-41. doi: 10.16358/j.issn.1009-1300.2019.8.041

    DANG A G, WANG K, WANG Y M, et al. The impact of UAVs swarming fighting concept development on attack and defense in future battlefield[J]. Tactical Missile Technology, 2019(1): 37-41(in Chinese). doi: 10.16358/j.issn.1009-1300.2019.8.041
    [3] MONREALE A, PINELLI F, TRASARTI R, et al. WhereNext: A location predictor on trajectory pattern mining[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 637-646.
    [4] 伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13.

    WU Z Q, LI D F. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13(in Chinese).
    [5] 崔洋培, 吴庆宪, 陈谋. 基于自适应神经模糊推理系统的空中目标意图预测[C]//第15届中国系统仿真技术及其应用学术会议论文集, 合肥: 中国科学技术大学出版社, 2014: 277-281.

    CUI Y P, WU Q X, CHEN M. Aerial target intention prediction based on adaptive neuro-fuzzy inference system[C]//Proceedings of the 15th China Symposium on System Simulation Technology and Its Application. Hefei : University of Science and Technology of China Press , 2014: 277-281 (in Chinese).
    [6] REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[C]//Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1987: 25-34.
    [7] VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226-1229. doi: 10.1103/PhysRevLett.75.1226
    [8] COUZIN I D, KRAUSE J, FRANKS N R, et al. Effective leadership and decision-making in animal groups on the move[J]. Nature, 2005, 433(7025): 513-516. doi: 10.1038/nature03236
    [9] ROMANCZUK P, BÄR M, EBELING W, et al. Active brownian particles: From individual to collective stochastic dynamics[J]. The European Physical Journal Special Topics, 2012, 202(1): 1-162. doi: 10.1140/epjst/e2012-01529-y
    [10] MOGILNER A, EDELSTEIN-KESHET L, BENT L, et al. Mutual interactions, potentials, and individual distance in a social aggregation[J]. Journal of Mathematical Biology, 2003, 47(4): 353-389. doi: 10.1007/s00285-003-0209-7
    [11] DUSTIN J N. Exploitation of self organization in UAV swarms for optimization in combat environments [D]. Ohio : Air Force Institute of Technology, 2008.
    [12] AHMAD B I, MURPHY J, LANGDON P M, et al. Destination inference using bridging distributions[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing . Piscataway: IEEE Press, 2015: 5585-5589.
    [13] AHMAD B I, MURPHY J K, LANGDON P M, et al. Bayesian intent prediction in object tracking using bridging distributions[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 215-227. doi: 10.1109/TCYB.2016.2629025
    [14] STONE L D, STREIT R L, CORWIN T L, et al. Bayesian multiple target tracking[M]. Norwood : Artech House Publishers , 2013: 82-83.
    [15] PANG S K, LI J, GODSILL S J. Detection and tracking of coordinated groups[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 472-502. doi: 10.1109/TAES.2011.5705687
    [16] PANG S K, LI J, GODSILL S J. Models and algorithms for detection and tracking of coordinated groups[C]//2008 IEEE Aerospace Conference. Piscataway: IEEE Press, 2008: 1-17.
    [17] AHMAD B I, MURPHY J K, LANGDON P M, et al. Intent inference for hand pointing gesture-based interactions in vehicles[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 878-889. doi: 10.1109/TCYB.2015.2417053
    [18] OKSENDAL B. Stochastic differential equations: An introduction with applications[M]. Beilin: Springer, 2013.
    [19] HAUG A J. Bayesian estimation and tracking: A practical guide[M]. Hoboken: John Wiley & Sons, Inc. , 2012.
    [20] 史小斌, 顾红, 苏卫民, 等. 地面侦察雷达目标威胁度评估方法研究[J]. 兵工学报, 2015, 36(6): 1128-1135.

    SHI X B, GU H, SU W M, et al. Study of target threat assessment for ground surveillance radar[J]. Acta Armamentarii, 2015, 36(6): 1128-1135(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  99
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-15
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答