留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进雷达图法的群智能算法综合性能评估

程宝鹏 方洋旺 彭维仕 杜泽弘

程宝鹏,方洋旺,彭维仕,等. 基于改进雷达图法的群智能算法综合性能评估[J]. 北京航空航天大学学报,2023,49(10):2780-2789 doi: 10.13700/j.bh.1001-5965.2021.0726
引用本文: 程宝鹏,方洋旺,彭维仕,等. 基于改进雷达图法的群智能算法综合性能评估[J]. 北京航空航天大学学报,2023,49(10):2780-2789 doi: 10.13700/j.bh.1001-5965.2021.0726
CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0726
Citation: CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0726

基于改进雷达图法的群智能算法综合性能评估

doi: 10.13700/j.bh.1001-5965.2021.0726
基金项目: 国家自然科学基金(71801222,61973253)
详细信息
    通讯作者:

    E-mail:17792018598@163.com

  • 中图分类号: TP302.7

Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method

Funds: National Natural Science Foundation of China (71801222,61973253)
More Information
  • 摘要:

    为解决传统性能评估方法无法准确评估群智能算法性能的问题,提出一种基于改进雷达图法的群智能算法综合性能评估方法。建立适应度评价次数、寻优时间、寻优稳定性、寻优精度、覆盖度、覆盖速率6种群体智能算法性能评估指标模型。在典型测试函数上,基于上述6种指标,通过改进雷达图法分析3种常用群智能算法的综合性能。仿真结果表明:所提方法能够全面客观的反映群智能算法的综合性能,为群智能算法的性能分析、优化和决策提供理论依据。

     

  • 图 1  群智能算法性能评估指标体系

    Figure 1.  Performance evaluation indicators system of swarm intelligence algorithms

    图 2  粒子寻优过程

    Figure 2.  Optimization process of particles

    图 3  粒子位置所在维度

    Figure 3.  Dimension of particles position

    图 4  粒子迭代过程

    Figure 4.  Iteration process of particles

    图 5  群智能算法综合性能评估雷达图

    Figure 5.  Radar graph of comprehensive performance evaluation of swarm intelligence algorithm

    图 6  改进的群智能算法综合性能评估雷达图

    Figure 6.  Improved radar graph of comprehensive performance evaluation of swarm intelligence algorithm

    图 7  算法在Griewank函数下的改进雷达图(等权)

    Figure 7.  Improved radar graph of algorithms under Griewank functions(same weight)

    图 8  算法在Griewank函数下的改进雷达图(不等权)

    Figure 8.  Improved radar graph of algorithms under Griewank function(unequal weight)

    表  1  单峰测试函数

    Table  1.   Single peak test functions

    函数名函数表达式定义域最优值维度
    Rotated
    Hyper-Ellipsoid
    $f(x) = \displaystyle \sum\limits_{i = 1}^d {\displaystyle \sum\limits_{j = 1}^d {x_j^2} }$[−65.536,65.536]02, 10
    Sum Squares
    $f(x) = \displaystyle \sum\limits_{i = 1}^d {ix_i^2}$[−10,10]02, 10
    下载: 导出CSV

    表  2  多峰测试函数

    Table  2.   Multimodal peak test functions

    函数名函数表达式定义域最优值维度
    Bohachevsky$f(x)=x_{1}^{2}+2 x_{2}^{2}-0.3 \cos \left(3 {\text{π}} x_{1}\right)-0.4 \cos \left(4 {\text{π}} x_{2}\right)+0.7$[−100,100]02
    Levy$f(x)=\sin ^{2}\left(3 {\text{π}} x_{1}\right)+\left(x_{1}-1\right)^{2}\left[1+\sin ^{2}\left(3 {\text{π}} x_{2}\right)\right]+\left(x_{2}-1\right)^{2}\left[1+\sin ^{2}\left(2 {\text{π}} x_{2}\right)\right]$[−10, 10]02
    Rastrigin$f(x) = 10d + \displaystyle \sum\limits_{i = 1}^d {[x_i^2 - 10\cos (2{\text{π} } {x_i})]}$[−5.12,5.12]
    0

    10
    Griewank$f(x)=1+\displaystyle\sum\limits_{i=1}^d\dfrac{x_i^2}{4\;000}+\displaystyle\prod_{i=1}^d{\rm{cos} }\left(\dfrac{x_i}{\sqrt i}\right)$[−600,600]010
    下载: 导出CSV

    表  3  算法初始化参数

    Table  3.   Initial parameters of algorithms

    算法参数初始值
    ACO$\rho $0.8
    $ \alpha $1
    $\beta $5
    BA$A_{\rm{l}}$0.6
    $r$0.7
    $ \alpha ' $0.9
    $\gamma $0.9
    PSO$w$0.5
    ${c_1}$1.5
    ${c_2}$1.5
    下载: 导出CSV

    表  4  参考值$\theta $

    Table  4.   Reference value $\theta $

    函数名维度$\theta $ 值
    Rotated
    Hyper-Ellipsoid
    2$1.334 \times {10^{ - 2}}$
    10$5.911 \times {10^3}$
    Sum Squares2$5.148 \times {10^{ - 5}}$
    10$ 1.930 $
    Bohachevsky2$1.013$
    Levy2$2.124 \times {10^{ - 2}}$
    Rastrigin10$4.380 \times {10^1}$
    Griewank10$1.438 \times {10^{ - 4}}$
    下载: 导出CSV

    表  5  算法在二维测试函数下的指标值

    Table  5.   Indexes value of algorithms in 2D test functions

    函数名算法适应度评价次数寻优时间/s寻优精度寻优覆盖度寻优覆盖速率寻优稳定性
    Rotated
    Hyper-Ellipsoid
    BA328
    0.586
    $6.715 \times {10^{ - 5}}$$4.387 \times {10^{ - 5}}$$2.816 \times {10^{ - 3}}$$6.154 \times {10^{ - 5}}$
    PSO828
    0.454
    $2.503 \times {10^{ - 139}}$$3.750 \times {10^{ - 4}}$$1.450 \times {10^{ - 2}}$$1.367 \times {10^{ - 138}}$
    ACO18990
    0.346
    $1.334 \times {10^{ - 2}}$$4.603 \times {10^{ - 3}}$$1.980 \times {10^{ - 1}}$$4.830 \times {10^{ - 2}}$
    Sum SquaresBA27316
    0.434
    $5.148 \times {10^{ - 5}}$$1.460 \times {10^{ - 3}}$$4.992 \times {10^{ - 3}}$$5.968 \times {10^{ - 5}}$
    PSO2410
    0.360
    $1.947 \times {10^{ - 141}}$$6.650 \times {10^{ - 3}}$$8.384 \times {10^{ - 3}}$$7.816 \times {10^{ - 141}}$
    ACO8553
    0.279
    $1.040 \times {10^{ - 6}}$$6.082 \times {10^{ - 2}}$$8.055 \times {10^{ - 2}}$$1.098 \times {10^{ - 6}}$
    BohachevskyBA160
    0.562
    $8.651 \times {10^{ - 4}}$$2.190 \times {10^{ - 5}}$$ 5.945 \times {10^{ - 3}} $$8.183 \times {10^{ - 4}}$
    PSO593
    0.400
    0$2.196 \times {10^{ - 4}}$$1.844 \times {10^{ - 2}}$0
    ACO33098
    0.267
    $1.013$$2.176 \times {10^{ - 3}}$$1.876 \times {10^{ - 1}}$$4.822 \times {10^{ - 1}}$
    LevyBA871
    0.554
    $4.403 \times {10^{ - 4}}$$1.438 \times {10^{ - 3}}$$4.360 \times {10^{ - 3}}$$3.271 \times {10^{ - 4}}$
    PSO991
    0.388
    $1.350 \times {10^{ - 31}}$$6.961 \times {10^{ - 3}}$$8.877 \times {10^{ - 3}}$$6.681 \times {10^{ - 47}}$
    ACO23073
    0.317
    $2.124 \times {10^{ - 2}}$$1.952 \times {10^{ - 2}}$$1.804 \times {10^{ - 2}}$$5.152 \times {10^{ - 2}}$
    下载: 导出CSV

    表  6  算法在十维测试函数下的指标值

    Table  6.   Indexes value of algorithms in 10D test functions

    函数名算法适应度评价次数寻优时间
    /s
    寻优精度寻优覆盖度寻优覆盖速率寻优稳定性
    Rotated
    Hyper-Ellipsoid
    BA333
    0.917
    $1.800$$1.669 \times {10^{ - 29}}$$2.601 \times {10^{ - 2}}$$5.087 \times {10^{ - 1}}$
    PSO398
    0.661
    $1.165 \times {10^{ - 8}}$$8.895 \times {10^{ - 29}}$$3.073 \times {10^{ - 2}}$$3.186 \times {10^{ - 8}}$
    ACO41691
    0.625
    $5.911 \times {10^3}$$7.666 \times {10^{ - 28}}$$2.344 \times {10^{ - 1}}$$1.844 \times {10^3}$
    Sum SquaresBA37333
    0.534
    $1.930$$8.529 \times {10^{ - 22}}$$9.957 \times {10^{ - 3}}$$3.968 \times {10^{ - 1}}$
    PSO2393
    0.393
    $1.742 \times {10^{ - 9}}$$8.865 \times {10^{ - 21}}$$5.294 \times {10^{ - 2}}$$5.503 \times {10^{ - 9}}$
    ACO29673
    0.251
    $6.049 \times {10^{ - 2}}$$1.184 \times {10^{ - 19}}$$2.421 \times {10^{ - 1}}$$9.447 \times {10^{ - 2}}$
    RastriginBA32080
    0.622
    $ 4.380 \times {10^1} $$4.830 \times {10^{ - 19}}$$8.789 \times {10^{ - 3}}$$1.077 \times {10^1}$
    PSO1230
    0.404
    $8.099$$4.427 \times {10^{ - 18}}$$1.678 \times {10^{ - 2}}$$7.158$
    ACO4321
    0.301
    $2.304 \times {10^1}$$1.037 \times {10^{ - 17}}$$2.536 \times {10^{ - 2}}$$3.946$
    GriewankBA36911
    1.111
    $1.438 \times {10^{ - 4}}$$8.799 \times {10^{ - 22}}$$1.216 \times {10^{ - 2}}$$3.058 \times {10^{ - 5}}$
    PSO3123
    0.898
    $8.293 \times {10^{ - 12}}$$9.019 \times {10^{ - 21}}$$4.856 \times {10^{ - 2}}$$2.771 \times {10^{ - 11}}$
    ACO31561
    0.709
    $3.754 \times {10^{ - 6}}$$1.162 \times {10^{ - 19}}$$2.376 \times {10^{ - 1}}$$1.481 \times {10^{ - 6}}$
    下载: 导出CSV

    表  7  算法在二维测试函数上综合指标值

    Table  7.   Comprehensive indexes value of algorithms in 2D test functions

    函数名PSOACOBA
    Rotated
    Hyper-Ellipsoid
    0.57530.49170.3690
    Sum Squares0.59680.48280.1281
    Bohachevsky0.56730.45220.3729
    Levy0.60960.33350.2734
    下载: 导出CSV

    表  8  算法在十维测试函数上综合指标值

    Table  8.   Comprehensive indexes value of algorithms in 10D test functions

    函数名PSOACOBA
    Rotated
    Hyper-Ellipsoid
    0.58740.38240.2494
    Sum Squares0.59600.42210.0769
    Rastrigin0.61300.52570.3218
    Griewank0.59750.42620.1126
    下载: 导出CSV
  • [1] KAUR K, KUMAR Y. Swarm intelligence and its applications towards various computing: A systematic review[C]//2020 International Conference on Intelligent Engineering and Management. Piscataway: IEEE Press, 2020: 57-62.
    [2] BREZOČNIK L, FISTER I, PODGORELEC V. Swarm intelligence algorithms for feature selection: A review[J]. Applied Sciences, 2018, 8(9): 1521. doi: 10.3390/app8091521
    [3] DANESH M, SHIRGAHI H. A novel hybrid knowledge of firefly and pso swarm intelligence algorithms for efficient data clustering[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(6): 3529-3538.
    [4] CHAI X Q. Task scheduling based on swarm intelligence algorithms in high performance computing environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2020: 1-9.
    [5] LIN N, TANG J C, LI X W, et al. A novel improved bat algorithm in UAV path planning[J]. Computers, Materials & Continua, 2019, 61(1): 323-344.
    [6] GAN C, CAO W H, WU M, et al. A new bat algorithm based on iterative local search and stochastic inertia weight[J]. Expert Systems with Applications, 2018, 104: 202-212. doi: 10.1016/j.eswa.2018.03.015
    [7] AHMED A M, RASHID T A, SAEED S A M. Cat swarm optimization algorithm: A survey and performance evaluation[J]. Computational Intelligence and Neuroscience, 2020, 2020: 1-20.
    [8] REVATHI K, KRISHNAMOORTHY N. The performance analysis of swallow swarm optimization algorithm[C]//2015 2nd International Conference on Electronics and Communication Systems. Piscataway: IEEE Press, 2015: 558-562.
    [9] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.

    LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12(in Chinese).
    [10] 张九龙, 王晓峰, 芦磊, 等. 若干新型智能优化算法对比分析研究[J]. 计算机科学与探索, 2022, 16(1): 88-105. doi: 10.3778/j.issn.1673-9418.2107028

    ZHANG J L, WANG X F, LU L, et al. Analysis and research of several new intelligent optimization algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 88-105(in Chinese). doi: 10.3778/j.issn.1673-9418.2107028
    [11] 孙雅薇, 田建宇, 梁炜, 等. 基于雷达图法的通信网络效能可视化建模[J]. 计算机仿真, 2019, 36(10): 1-5. doi: 10.3969/j.issn.1006-9348.2019.10.001

    SUN Y W, TIAN J Y, LIANG W, et al. Visual modeling of communication network effectiveness based on radar chart[J]. Computer Simulation, 2019, 36(10): 1-5(in Chinese). doi: 10.3969/j.issn.1006-9348.2019.10.001
    [12] 陈勇, 陈潇凯, 李志远, 等. 具有评价结果唯一性特征的雷达图综合评价法[J]. 北京理工大学学报, 2010, 30(12): 1409-1412.

    CHEN Y, CHEN X K, LI Z Y, et al. Method of radar chart comprehensive evaluation with uniqueness feature[J]. Transactions of Beijing Institute of Technology, 2010, 30(12): 1409-1412(in Chinese).
    [13] 李青, 战仁军, 彭维仕. 基于雷达图的防暴武器系统作战效能评估方法[J]. 火力与指挥控制, 2020, 45(8): 186-190.

    LI Q, ZHAN R J, PENG W S. Operational effectiveness evaluation method of riot weapon systems[J]. Fire Control & Command Control, 2020, 45(8): 186-190(in Chinese).
    [14] 程志友, 朱唯韦, 陶青, 等. 基于改进雷达图的配电系统电能质量评估方法[J]. 电测与仪表, 2019, 56(14): 34 -39.

    CHENG Z Y, ZHU W W, TAO Q, et al. Power quality evaluation method of distribution system based on improved radar chart[J]. Electrical Measurement & Instrumentation, 2019, 56(14): 34 -39(in Chinese).
    [15] DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 1996, 26(1): 29-41. doi: 10.1109/3477.484436
    [16] YANG X S, HE X S. Bat algorithm: Literature review and applications[J]. International Journal of Bio-Inspired Computation, 2013, 5(3): 141. doi: 10.1504/IJBIC.2013.055093
    [17] KENNEDY J. Particle swarm optimization[C]//Encyclopedia of Machine Learning and Data Mining. Berlin: Springer, 2017: 967-972.
    [18] Dan Simon. 进化优化算法: 基于仿生和种群的计算机智能方法[M]. 陈曦 译. 北京: 清华大学出版社, 2018: 455-457.

    DAN S. Evolutionary optimization algorithms: Biologically inspired and population-based approaches to computer intelligence[M]. Chen Xi translated. Beijing: Tsinghua University Press, 2018: 455-457(in Chinese).
    [19] 陈一昭, 姜麟. 蚁群算法参数分析[J]. 科学技术与工程, 2011, 11(36): 9080-9084.

    CHEN Y Z, JIANG L. Parametric study of ant colony optimization[J]. Science Technology and Engineering, 2011, 11(36): 9080-9084(in Chinese).
    [20] 包子阳, 余继周, 杨杉. 智能优化算法及其MATLAB实例[M]. 第2版. 北京: 电子工业出版社, 2018: 95-97.

    BAO Z Y, YU J Z, YANG S. Intelligent optimization algorithm and its MATLAB example[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018: 95-97 (in Chinese).
    [21] YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin: Springer, 2010: 65-74.
    [22] CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Piscataway: IEEE Press, 2002: 1951-1957.
    [23] 杨博雯, 钱伟懿. 粒子群优化算法中惯性权重改进策略综述[J]. 渤海大学学报(自然科学版), 2019, 40(3): 274-288.

    YANG B W, QIAN W Y. Summary on improved inertia weight strategies for particle swarm optimization algorithm[J]. Journal of Bohai University (Natural Science Edition), 2019, 40(3): 274-288(in Chinese).
    [24] 王凌峰, 姚依楠. 主观线性加权评价问题的新方法: 中位数层次分析法[J]. 系统科学学报, 2018, 26(1): 96-99.

    WANG L F, YAO Y N. A new method for subjective linear weighted evaluation: The median analytic hierarchy process[J]. Chinese Journal of Systems Science, 2018, 26(1): 96-99(in Chinese).
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  51
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 录用日期:  2022-01-17
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答