Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method
-
摘要:
为解决传统性能评估方法无法准确评估群智能算法性能的问题,提出一种基于改进雷达图法的群智能算法综合性能评估方法。建立适应度评价次数、寻优时间、寻优稳定性、寻优精度、覆盖度、覆盖速率6种群体智能算法性能评估指标模型。在典型测试函数上,基于上述6种指标,通过改进雷达图法分析3种常用群智能算法的综合性能。仿真结果表明:所提方法能够全面客观的反映群智能算法的综合性能,为群智能算法的性能分析、优化和决策提供理论依据。
Abstract:In order to solve the problem that traditional performance evaluation methods cannot accurately evaluate the performance of swarm intelligence algorithms, a comprehensive performance evaluation method for swarm intelligence algorithms based on the improved radar graph method was proposed. Six performance evaluation index models for swarm intelligence algorithm were established, including fitness evaluation time, optimization time, optimization stability, optimization accuracy, coverage, and coverage rate. The improved radar graph method was utilized to examine the complete performance of three widely-known swarm intelligence algorithms based on the aforementioned six indicators using common test functions. The simulation results show that the comprehensive proposed method of swarm intelligence algorithm based on the improved radar graph can reflect the comprehensive performance of swarm intelligence algorithm comprehensively and objectively, and provide theoretical basis for the performance analysis, optimization, and decision-making of swarm intelligence algorithm.
-
表 1 单峰测试函数
Table 1. Single peak test functions
函数名 函数表达式 定义域 最优值 维度 Rotated
Hyper-Ellipsoid$f(x) = \displaystyle \sum\limits_{i = 1}^d {\displaystyle \sum\limits_{j = 1}^d {x_j^2} }$ [−65.536,65.536] 0 2, 10 Sum Squares $f(x) = \displaystyle \sum\limits_{i = 1}^d {ix_i^2}$ [−10,10] 0 2, 10 表 2 多峰测试函数
Table 2. Multimodal peak test functions
函数名 函数表达式 定义域 最优值 维度 Bohachevsky $f(x)=x_{1}^{2}+2 x_{2}^{2}-0.3 \cos \left(3 {\text{π}} x_{1}\right)-0.4 \cos \left(4 {\text{π}} x_{2}\right)+0.7$ [−100,100] 0 2 Levy $f(x)=\sin ^{2}\left(3 {\text{π}} x_{1}\right)+\left(x_{1}-1\right)^{2}\left[1+\sin ^{2}\left(3 {\text{π}} x_{2}\right)\right]+\left(x_{2}-1\right)^{2}\left[1+\sin ^{2}\left(2 {\text{π}} x_{2}\right)\right]$ [−10, 10] 0 2 Rastrigin $f(x) = 10d + \displaystyle \sum\limits_{i = 1}^d {[x_i^2 - 10\cos (2{\text{π} } {x_i})]}$ [−5.12,5.12]
0
10Griewank $f(x)=1+\displaystyle\sum\limits_{i=1}^d\dfrac{x_i^2}{4\;000}+\displaystyle\prod_{i=1}^d{\rm{cos} }\left(\dfrac{x_i}{\sqrt i}\right)$ [−600,600] 0 10 表 3 算法初始化参数
Table 3. Initial parameters of algorithms
算法 参数 初始值 ACO $\rho $ 0.8 $ \alpha $ 1 $\beta $ 5 BA $A_{\rm{l}}$ 0.6 $r$ 0.7 $ \alpha ' $ 0.9 $\gamma $ 0.9 PSO $w$ 0.5 ${c_1}$ 1.5 ${c_2}$ 1.5 表 4 参考值$\theta $
Table 4. Reference value $\theta $
函数名 维度 $\theta $ 值 Rotated
Hyper-Ellipsoid2 $1.334 \times {10^{ - 2}}$ 10 $5.911 \times {10^3}$ Sum Squares 2 $5.148 \times {10^{ - 5}}$ 10 $ 1.930 $ Bohachevsky 2 $1.013$ Levy 2 $2.124 \times {10^{ - 2}}$ Rastrigin 10 $4.380 \times {10^1}$ Griewank 10 $1.438 \times {10^{ - 4}}$ 表 5 算法在二维测试函数下的指标值
Table 5. Indexes value of algorithms in 2D test functions
函数名 算法 适应度评价次数 寻优时间/s 寻优精度 寻优覆盖度 寻优覆盖速率 寻优稳定性 Rotated
Hyper-EllipsoidBA 328
0.586$6.715 \times {10^{ - 5}}$ $4.387 \times {10^{ - 5}}$ $2.816 \times {10^{ - 3}}$ $6.154 \times {10^{ - 5}}$ PSO 828
0.454$2.503 \times {10^{ - 139}}$ $3.750 \times {10^{ - 4}}$ $1.450 \times {10^{ - 2}}$ $1.367 \times {10^{ - 138}}$ ACO 18990
0.346$1.334 \times {10^{ - 2}}$ $4.603 \times {10^{ - 3}}$ $1.980 \times {10^{ - 1}}$ $4.830 \times {10^{ - 2}}$ Sum Squares BA 27316
0.434$5.148 \times {10^{ - 5}}$ $1.460 \times {10^{ - 3}}$ $4.992 \times {10^{ - 3}}$ $5.968 \times {10^{ - 5}}$ PSO 2410
0.360$1.947 \times {10^{ - 141}}$ $6.650 \times {10^{ - 3}}$ $8.384 \times {10^{ - 3}}$ $7.816 \times {10^{ - 141}}$ ACO 8553
0.279$1.040 \times {10^{ - 6}}$ $6.082 \times {10^{ - 2}}$ $8.055 \times {10^{ - 2}}$ $1.098 \times {10^{ - 6}}$ Bohachevsky BA 160
0.562$8.651 \times {10^{ - 4}}$ $2.190 \times {10^{ - 5}}$ $ 5.945 \times {10^{ - 3}} $ $8.183 \times {10^{ - 4}}$ PSO 593
0.4000 $2.196 \times {10^{ - 4}}$ $1.844 \times {10^{ - 2}}$ 0 ACO 33098
0.267$1.013$ $2.176 \times {10^{ - 3}}$ $1.876 \times {10^{ - 1}}$ $4.822 \times {10^{ - 1}}$ Levy BA 871
0.554$4.403 \times {10^{ - 4}}$ $1.438 \times {10^{ - 3}}$ $4.360 \times {10^{ - 3}}$ $3.271 \times {10^{ - 4}}$ PSO 991
0.388$1.350 \times {10^{ - 31}}$ $6.961 \times {10^{ - 3}}$ $8.877 \times {10^{ - 3}}$ $6.681 \times {10^{ - 47}}$ ACO 23073
0.317$2.124 \times {10^{ - 2}}$ $1.952 \times {10^{ - 2}}$ $1.804 \times {10^{ - 2}}$ $5.152 \times {10^{ - 2}}$ 表 6 算法在十维测试函数下的指标值
Table 6. Indexes value of algorithms in 10D test functions
函数名 算法 适应度评价次数 寻优时间
/s寻优精度 寻优覆盖度 寻优覆盖速率 寻优稳定性 Rotated
Hyper-EllipsoidBA 333
0.917$1.800$ $1.669 \times {10^{ - 29}}$ $2.601 \times {10^{ - 2}}$ $5.087 \times {10^{ - 1}}$ PSO 398
0.661$1.165 \times {10^{ - 8}}$ $8.895 \times {10^{ - 29}}$ $3.073 \times {10^{ - 2}}$ $3.186 \times {10^{ - 8}}$ ACO 41691
0.625$5.911 \times {10^3}$ $7.666 \times {10^{ - 28}}$ $2.344 \times {10^{ - 1}}$ $1.844 \times {10^3}$ Sum Squares BA 37333
0.534$1.930$ $8.529 \times {10^{ - 22}}$ $9.957 \times {10^{ - 3}}$ $3.968 \times {10^{ - 1}}$ PSO 2393
0.393$1.742 \times {10^{ - 9}}$ $8.865 \times {10^{ - 21}}$ $5.294 \times {10^{ - 2}}$ $5.503 \times {10^{ - 9}}$ ACO 29673
0.251$6.049 \times {10^{ - 2}}$ $1.184 \times {10^{ - 19}}$ $2.421 \times {10^{ - 1}}$ $9.447 \times {10^{ - 2}}$ Rastrigin BA 32080
0.622$ 4.380 \times {10^1} $ $4.830 \times {10^{ - 19}}$ $8.789 \times {10^{ - 3}}$ $1.077 \times {10^1}$ PSO 1230
0.404$8.099$ $4.427 \times {10^{ - 18}}$ $1.678 \times {10^{ - 2}}$ $7.158$ ACO 4321
0.301$2.304 \times {10^1}$ $1.037 \times {10^{ - 17}}$ $2.536 \times {10^{ - 2}}$ $3.946$ Griewank BA 36911
1.111$1.438 \times {10^{ - 4}}$ $8.799 \times {10^{ - 22}}$ $1.216 \times {10^{ - 2}}$ $3.058 \times {10^{ - 5}}$ PSO 3123
0.898$8.293 \times {10^{ - 12}}$ $9.019 \times {10^{ - 21}}$ $4.856 \times {10^{ - 2}}$ $2.771 \times {10^{ - 11}}$ ACO 31561
0.709$3.754 \times {10^{ - 6}}$ $1.162 \times {10^{ - 19}}$ $2.376 \times {10^{ - 1}}$ $1.481 \times {10^{ - 6}}$ 表 7 算法在二维测试函数上综合指标值
Table 7. Comprehensive indexes value of algorithms in 2D test functions
函数名 PSO ACO BA Rotated
Hyper-Ellipsoid0.5753 0.4917 0.3690 Sum Squares 0.5968 0.4828 0.1281 Bohachevsky 0.5673 0.4522 0.3729 Levy 0.6096 0.3335 0.2734 表 8 算法在十维测试函数上综合指标值
Table 8. Comprehensive indexes value of algorithms in 10D test functions
函数名 PSO ACO BA Rotated
Hyper-Ellipsoid0.5874 0.3824 0.2494 Sum Squares 0.5960 0.4221 0.0769 Rastrigin 0.6130 0.5257 0.3218 Griewank 0.5975 0.4262 0.1126 -
[1] KAUR K, KUMAR Y. Swarm intelligence and its applications towards various computing: A systematic review[C]//2020 International Conference on Intelligent Engineering and Management. Piscataway: IEEE Press, 2020: 57-62. [2] BREZOČNIK L, FISTER I, PODGORELEC V. Swarm intelligence algorithms for feature selection: A review[J]. Applied Sciences, 2018, 8(9): 1521. doi: 10.3390/app8091521 [3] DANESH M, SHIRGAHI H. A novel hybrid knowledge of firefly and pso swarm intelligence algorithms for efficient data clustering[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(6): 3529-3538. [4] CHAI X Q. Task scheduling based on swarm intelligence algorithms in high performance computing environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2020: 1-9. [5] LIN N, TANG J C, LI X W, et al. A novel improved bat algorithm in UAV path planning[J]. Computers, Materials & Continua, 2019, 61(1): 323-344. [6] GAN C, CAO W H, WU M, et al. A new bat algorithm based on iterative local search and stochastic inertia weight[J]. Expert Systems with Applications, 2018, 104: 202-212. doi: 10.1016/j.eswa.2018.03.015 [7] AHMED A M, RASHID T A, SAEED S A M. Cat swarm optimization algorithm: A survey and performance evaluation[J]. Computational Intelligence and Neuroscience, 2020, 2020: 1-20. [8] REVATHI K, KRISHNAMOORTHY N. The performance analysis of swallow swarm optimization algorithm[C]//2015 2nd International Conference on Electronics and Communication Systems. Piscataway: IEEE Press, 2015: 558-562. [9] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12(in Chinese). [10] 张九龙, 王晓峰, 芦磊, 等. 若干新型智能优化算法对比分析研究[J]. 计算机科学与探索, 2022, 16(1): 88-105. doi: 10.3778/j.issn.1673-9418.2107028ZHANG J L, WANG X F, LU L, et al. Analysis and research of several new intelligent optimization algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 88-105(in Chinese). doi: 10.3778/j.issn.1673-9418.2107028 [11] 孙雅薇, 田建宇, 梁炜, 等. 基于雷达图法的通信网络效能可视化建模[J]. 计算机仿真, 2019, 36(10): 1-5. doi: 10.3969/j.issn.1006-9348.2019.10.001SUN Y W, TIAN J Y, LIANG W, et al. Visual modeling of communication network effectiveness based on radar chart[J]. Computer Simulation, 2019, 36(10): 1-5(in Chinese). doi: 10.3969/j.issn.1006-9348.2019.10.001 [12] 陈勇, 陈潇凯, 李志远, 等. 具有评价结果唯一性特征的雷达图综合评价法[J]. 北京理工大学学报, 2010, 30(12): 1409-1412.CHEN Y, CHEN X K, LI Z Y, et al. Method of radar chart comprehensive evaluation with uniqueness feature[J]. Transactions of Beijing Institute of Technology, 2010, 30(12): 1409-1412(in Chinese). [13] 李青, 战仁军, 彭维仕. 基于雷达图的防暴武器系统作战效能评估方法[J]. 火力与指挥控制, 2020, 45(8): 186-190.LI Q, ZHAN R J, PENG W S. Operational effectiveness evaluation method of riot weapon systems[J]. Fire Control & Command Control, 2020, 45(8): 186-190(in Chinese). [14] 程志友, 朱唯韦, 陶青, 等. 基于改进雷达图的配电系统电能质量评估方法[J]. 电测与仪表, 2019, 56(14): 34 -39.CHENG Z Y, ZHU W W, TAO Q, et al. Power quality evaluation method of distribution system based on improved radar chart[J]. Electrical Measurement & Instrumentation, 2019, 56(14): 34 -39(in Chinese). [15] DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 1996, 26(1): 29-41. doi: 10.1109/3477.484436 [16] YANG X S, HE X S. Bat algorithm: Literature review and applications[J]. International Journal of Bio-Inspired Computation, 2013, 5(3): 141. doi: 10.1504/IJBIC.2013.055093 [17] KENNEDY J. Particle swarm optimization[C]//Encyclopedia of Machine Learning and Data Mining. Berlin: Springer, 2017: 967-972. [18] Dan Simon. 进化优化算法: 基于仿生和种群的计算机智能方法[M]. 陈曦 译. 北京: 清华大学出版社, 2018: 455-457.DAN S. Evolutionary optimization algorithms: Biologically inspired and population-based approaches to computer intelligence[M]. Chen Xi translated. Beijing: Tsinghua University Press, 2018: 455-457(in Chinese). [19] 陈一昭, 姜麟. 蚁群算法参数分析[J]. 科学技术与工程, 2011, 11(36): 9080-9084.CHEN Y Z, JIANG L. Parametric study of ant colony optimization[J]. Science Technology and Engineering, 2011, 11(36): 9080-9084(in Chinese). [20] 包子阳, 余继周, 杨杉. 智能优化算法及其MATLAB实例[M]. 第2版. 北京: 电子工业出版社, 2018: 95-97.BAO Z Y, YU J Z, YANG S. Intelligent optimization algorithm and its MATLAB example[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018: 95-97 (in Chinese). [21] YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin: Springer, 2010: 65-74. [22] CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Piscataway: IEEE Press, 2002: 1951-1957. [23] 杨博雯, 钱伟懿. 粒子群优化算法中惯性权重改进策略综述[J]. 渤海大学学报(自然科学版), 2019, 40(3): 274-288.YANG B W, QIAN W Y. Summary on improved inertia weight strategies for particle swarm optimization algorithm[J]. Journal of Bohai University (Natural Science Edition), 2019, 40(3): 274-288(in Chinese). [24] 王凌峰, 姚依楠. 主观线性加权评价问题的新方法: 中位数层次分析法[J]. 系统科学学报, 2018, 26(1): 96-99.WANG L F, YAO Y N. A new method for subjective linear weighted evaluation: The median analytic hierarchy process[J]. Chinese Journal of Systems Science, 2018, 26(1): 96-99(in Chinese).